Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЛАВА 4 ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
433.15 Кб
Скачать

Глава 4 химическая связь и строение веществ

Образование из атомов молекул, сложных ионов, кристаллических, аморфных и других веществ сопровождается уменьшением энергии по сравнению с невзаимодействующими (свободными) атомами. При этом минимальной энергии соответствует определённое расположение атомов друг относительно друга, которому отвечает существенное перераспределение электронной плотности (происходит изменение электронных структур взаимодействующих атомов). Силы, удерживающие атомы в молекулах и веществах, получили обобщённое название «химической связи».

Согласно предельно упрощенным теориям строения молекул, основанным на электронной теории валентности, предложенных в 1916 году, химическая связь возникает за счёт перераспределения электронов валентных орбиталей, в результате чего создаётся электронная конфигурация благородного газа ( – октет) или электронная структура за счёт образования общих электронных пар (Г. Льюис) или за счёт образования ионов (В. Коссель). Важнейшие виды химической связи: ковалентная, ионная, металлическая, водородная и межмолекулярная.

4.1 Ковалентная связь

Ковалентная связь – наиболее общий вид химической связи, возникающей за счёт обобществления электронной пары, когда каждый из взаимодействующих атомов поставляет по одному электрону.

Механизм образования ковалентной связи рассмотрим на примере молекулы .

При сближении двух атомов водорода до определённого расстояния происходит перекрытие электронных облаков атомов и образуется молекула . Поэтому каждый атом водорода в молекуле имеет завершенную структуру . В результате между ядрами атомов возникает область максимальной электронной плотности (рисунок 4.1).

Р исунок 4.1 – Перекрывание электронных облаков в молекуле водорода

К овалентную связь можно представить:

а) графически

б) в виде электронных пар

Хорошей иллюстрацией механизма образования ковалентной связи является рисунок 4.2.

Рисунок 4.2 - График изменения потенциальной энергии в зависимости от расстояния между ядрами атомов водорода

Устойчивым состоянием молекулы является такое, когда силы притяжения и отталкивания уравновешивают друг друга. Оно отвечает минимуму потенциальной энергии и характеризуется величиной равновесного расстояния между ядрами атомов ( ), а также величиной энергии связи ( ), отвечающей минимуму на потенциальной кривой.

Таким образом сущность ковалентной связи состоит в следующем:

- она образуется электронами с противоположно направленными спинами;

- связь тем прочнее, чем больше перекрытие электронных облаков взаимодействующих атомов.

Существуют две разновидности ковалентной связи.

Неполярная ковалентная связь, в которой общая электронная пара расположена в пространстве симметрично относительно ядер обоих атомов. Она образуется преимущественно между атомами одного и того же элемента или между атомами, имеющими близкие значения электроотрицательностей и т.д.) (рисунок 4.3а). Эти вещества обладают низкими температурами плавления и кипения, и в воде практически не диссоциируют.

Полярная ковалентная связь, в которой общая электронная пара смещена в сторону более электроотрицательного элемента. Она образуется между атомами с различной электроотрицательностью. Например, молекула хлороводорода :

Чем больше разность величин ЭО связанных атомов, тем больше полярность связи.

Например:

Полярность связи обусловлена тем, что в результате смещения электронной плотности к атому более электроотрицательного элемента, образуется постоянный диполь: в молекуле на атоме хлора появляется избыточный отрицательный заряд, а на атоме водорода равный по величине положительный заряд:

Схематически диполь изображается так (рисунок 4.3б):

Рисунок 4.3 а – неполярная ковалентная связь, б – полярная ковалентная связь, длина диполя, т.е. расстояние между ядрами атомов в молекуле.

Для количественной характеристики полярности связи (молекулы) вводится величина – дипольный момент , которая (является векторной величиной):

- заряд электрона, равный .

Дипольный момент измеряется в кулон-метрах или в дебаях .

Дипольный момент молекулы равен сумме дипольных моментов всех связей в этой молекуле, а поскольку дипольные моменты векторные величины, то их сумма определяется по правилу параллелограмма.