- •1. Элементы электрических цепей, режимы их работы. Условные положительные направления эдс, токов и напряжений. Законы Ома и Кирхгофа
- •2. Линейные разветвленные и неразветвленные цепи постоянного тока с одним источником эдс. Метод эквивалентных преобразований. Баланс мощностей
- •3. Методы расчета сложных цепей постоянного тока: методы уравнений Кирхгофа, наложения и др.
- •Нелинейные элементы и их характеристики. Графоаналитический метод расчета
- •5. Основные параметры синусоидальных величин (начальная фаза, сдвиг фаз, мгновенное, амплитудное, действующее и среднее значение). Способы представления синусоидальных величин
- •Резистивные, индуктивные и емкостные элементы
- •7. Анализ цепей с последовательным, параллельным и смешанным соединениями. Векторные диаграммы на комплексной плоскости. Топографическая диаграмма
- •1). Последовательное соединение r, l, c -элементов.
- •3). Смешанное (последовательно-параллельное) соединение r, l, c -элементов.
- •8. Активная, реактивная и полная мощности. Треугольник мощностей
- •9. Способы представления симметричной системы эдс трехфазного генератора. Условные положительные направления электрических величин в трехфазной цепи
- •10. Соединение элементов трехфазной цепи звездой. Назначение нейтрального провода. Анализ электрического состояния четырехпроводной схемы «звезда»
- •11. Симметричный и несимметричный режимы в схеме «звезда». Векторные диаграммы
- •12. Соединение трехфазного приемника треугольником. Анализ электрического состояния. Симметричный и несимметричный режимы. Векторные диаграммы
- •2) Несимметричная нагрузка.
- •1. Назначение и области применения трансформаторов. Устройство и принцип действия однофазных трансформаторов
- •3. Устройство и принцип действия трехфазных асинхронных двигателей. Уравнения электрического состояния цепей обмоток статора и ротора
- •4. Свойство саморегулирования асинхронных двигателей
- •Электромагнитный момент ад и его зависимость от величин скольжения и напряжения сети
- •6. Области применения синхронных электрических машин. Устройство трехфазной синхронной машины
- •7. Области применения двигателей постоянного тока. Способы возбуждения дпт
- •8. Принцип работы дпт. Электромагнитный момент. Свойство саморегулирования
- •1.Полупроводниковые материалы. Собственная и примесная электропроводности.
- •2. Электронно-дырочный переход и его свойства. Переход металл-полупроводник.
- •Полупроводниковые резисторы. Назначение, характеристики, параметры
- •4. Классификация полупроводниковых диодов. Условные графические и буквенные обозначения
- •5. Выпрямительные диоды: условное графическое и буквенное обозначения, вах , параметры
- •6. Тиристоры: динисторы, тринисторы, симисторы. Области применения. Условные графические обозначения. Устройство, принцип работы, вах. Основные параметры
- •1. Динистора 2. Тринистора
- •3. Симистора
- •2). Трехфазная мостовая схема выпрямителя
- •9. Сглаживающие фильтры. Коэффициент сглаживания, расчет параметров фильтров. Фильтры с активным элементом
- •10. Управляемые выпрямители. Временные диаграммы управляемых выпрямителей. Тиристорные преобразователи, как источники регулируемого напряжения. Схема управления дпт
- •11. Стабилизаторы напряжения. Параметрические и компенсационные стабилизаторы.
- •12. Биполярные транзисторы: условные графические изображения, устройство, режимы работы
- •13 .Схемы включения с об, оэ, ок , их сравнительный анализ
- •14. Основные характеристики, h-параметры биполярных транзисторов (для схемы с оэ)
- •15. Полевые транзисторы с управляющим р-n-переходом. Структура, принцип работы. Основные параметры, стокозатворные и выходные характеристики
- •17. Имс: маркировка, обозначение. Полупроводниковые, гибридные, аналоговые, цифровые имс
- •18.Однокаскадный усилитель на биполярном транзисторе с оэ. Назначение элементов схемы. Принцип работы. Статический и динамический режимы
- •19. Определение начальных условий, обеспечивающих заданный режим работы усилителя с оэ
- •20. Амплитудная, амплитудно-частотная и фазочастотная характеристики усилителей.
- •21. Определение коэффициентов усиления, входного и выходного сопротивлений каскада с общим эмиттером.
- •23. Обратные связи в усилителях и их влияние на параметры и характеристики усилителей.
- •24. Режимы работы усилительных каскадов.
- •25. Усилители постоянного тока. Дифференциальные усилители. Ду с симметричным выходом. Принцип работы, область применения.
- •26. Операционные усилители (оу): области применения, условное графическое изображение, структурная схема. Назначение элементов структурной схемы
- •27. Свойства идеального оу. Амплитудная характеристика. Режимы работы оу
- •28. Примеры построения аналоговых схем на основе оу: инвертирующий и неинвертирующий усилители, вычитатель, сумматоры, интеграторы, дифференциаторы, компараторы. Временные диаграммы
- •32. Ключевой режим транзистора. Ключи на биполярном и полевом транзисторах
- •33. Компараторы и мультивибраторы на основе оу. Принцип работы. Временные диаграммы. Понятие об одновибраторах
- •35. Реализация простых логических операций на базе электронных схем (логический базис)
- •36. Классификация и основные параметры логических элементов
- •37. Базовые логические элементы ттл и кмоп. Примеры схемной реализации. Принцип работы
- •38. Основные законы и тождества алгебры логики. Преобразование уравнений логических функций. Комбинационные логические устройства
- •39. Триггеры: определение, области применения, классификация. Назначение входов и выходов
- •40. Структурные схемы rs-триггеров (асинхронных и синхронных) с прямым и инверсным управлением. Таблицы состояний, временные диаграммы
- •43. Примеры построения д- , т-, rs- триггеров на основе jk- триггера
- •44. Элементы оптоэлектроники. Управляемые источники света. Фотоприемники и фотоизлучатели
- •45. Светодиоды, фотодиоды, фоторезисторы, фототранзисторы, фототиристоры. Оптроны. Условные графические изображения. Области применения. Основные параметры
27. Свойства идеального оу. Амплитудная характеристика. Режимы работы оу
Идеальным операционным усилителем, считается усилитель, который имеет следующие свойства:
бесконечно большой дифференциальный коэффициент усиления по напряжению (у реальных ОУ от 1 тыс. до 100 млн.);
нулевое напряжение смещения нуля Uсм, т.е. при равенстве входных напряжений выходное напряжение равно нулю (у реальных ОУ Uсм, приведенное ко входу, находится в пределах от 5 мкВ до
50 мВ);
нулевые входные токи (у реальных ОУ от сотых долей пА до единиц мкА);
нулевое выходное сопротивление (у реальных маломощных ОУ от десятков Ом до единиц кОм);
коэффициент усиления синфазного сигнала равен нулю;
мгновенный отклик на изменение входных сигналов (у реальных ОУ время установления выходного напряжения от единиц наносекунд до сотен микросекунд).
Типичная логарифмическая амплитудно-частотная характеристика операционного усилителя:
33
28. Примеры построения аналоговых схем на основе оу: инвертирующий и неинвертирующий усилители, вычитатель, сумматоры, интеграторы, дифференциаторы, компараторы. Временные диаграммы
Инвертирующий
усилитель –
инвертирует
и усиливает/ослабляет
напряжение
(то есть умножает напряжение на
отрицательную константу). Абсолютная
величина коэффициента усиления может
быть как больше, так и меньше единицы
как больше,.
Неинвертирующий
усилитель –
усиливает
напряжение
(умножает
напряжение
на константу, большую единицы).
Вычитатель
–
данная
схема предназначена для получения
разности
двух
напряжений, при этом каждое из них
предварительно умножается на некоторую
константу (константы определяются
резисторами).
Сумматор
–
суммирует
(с
весом)
несколько
напряжений.
Сумма
на
выходе инвертирована, то есть все веса
отрицательны.
Интегратор
–
интегрирует
(инвертированный)
входной
сигнал по
времени.
Дифференциатор
–
дифференцирует
(инвертированный)
входной
сигнал
по времени.
Компаратор
–
сравнивает
два напряжения и выдает на выходе одно
из
двух состояний в зависимости от того,
какое из входных напряжений больше.
34
32. Ключевой режим транзистора. Ключи на биполярном и полевом транзисторах
Транзисторные ключи (ТК) являются одним из наиболее распространенных элементов импульсных устройств. На их основе создаются триггеры, мультивибраторы, коммутаторы, блокинг-генераторы и т. д.
зависимости от целевого назначения ТК и особенностей его работы схема ТК может несколько видоизменяться. Но, несмотря на это, в основе всех модификаций лежит изображенная на рис.1 транзисторная ключевая схема.
Принято различать следующие режимы работы ключа: режим отсечки; нормальный активный; инверсный активный; режим насыщения.
ТК имеет два основных состояния: разомкнутое, которому соответствует режим отсечки транзистора (транзистор заперт), и замкнутое, которое характеризуется режимом насыщения транзистора или режимом, близким к нему.
течение процесса переключения транзистор работает в активном режиме. Процессы в ключевом каскаде носят нелинейный характер.
Ключи на полевых транзисторах используются для ком-мутации как аналоговых, так и цифровых сигналов, причем коммутаторы аналоговых сигналов обычно выполняют на полевых транзисторах с управляющим p-n-переходом или МОП-транзисторах с индуцированным каналом. В цифровых схемах применяются только МОП-транзисторы с индуцированным каналом.
Для ключей на полевых транзисторах характерно: 1) малое остаточное напряжение на ключе, находящемся в проводящем состоянии; 2) высокое сопротивление в непроводящем состоянии и, как следствие, малый ток, протекающий через транзистор, канал которого перекрыт; 3) малая мощность, потребляемая от
источника управляющего напряжения; 4) хорошая электрическая развязка между цепью управления и цепью коммутируемого сигнала, что позволяет обойтись без трансформатора в цепи управления; 5) возможность коммутации
электрических сигналов очень малого уровня (порядка мкВ).
По быстродействию ключи на полевых обычно уступают ключам на биполярных транзисторах.
35
