- •1. Элементы электрических цепей, режимы их работы. Условные положительные направления эдс, токов и напряжений. Законы Ома и Кирхгофа
- •2. Линейные разветвленные и неразветвленные цепи постоянного тока с одним источником эдс. Метод эквивалентных преобразований. Баланс мощностей
- •3. Методы расчета сложных цепей постоянного тока: методы уравнений Кирхгофа, наложения и др.
- •Нелинейные элементы и их характеристики. Графоаналитический метод расчета
- •5. Основные параметры синусоидальных величин (начальная фаза, сдвиг фаз, мгновенное, амплитудное, действующее и среднее значение). Способы представления синусоидальных величин
- •Резистивные, индуктивные и емкостные элементы
- •7. Анализ цепей с последовательным, параллельным и смешанным соединениями. Векторные диаграммы на комплексной плоскости. Топографическая диаграмма
- •1). Последовательное соединение r, l, c -элементов.
- •3). Смешанное (последовательно-параллельное) соединение r, l, c -элементов.
- •8. Активная, реактивная и полная мощности. Треугольник мощностей
- •9. Способы представления симметричной системы эдс трехфазного генератора. Условные положительные направления электрических величин в трехфазной цепи
- •10. Соединение элементов трехфазной цепи звездой. Назначение нейтрального провода. Анализ электрического состояния четырехпроводной схемы «звезда»
- •11. Симметричный и несимметричный режимы в схеме «звезда». Векторные диаграммы
- •12. Соединение трехфазного приемника треугольником. Анализ электрического состояния. Симметричный и несимметричный режимы. Векторные диаграммы
- •2) Несимметричная нагрузка.
- •1. Назначение и области применения трансформаторов. Устройство и принцип действия однофазных трансформаторов
- •3. Устройство и принцип действия трехфазных асинхронных двигателей. Уравнения электрического состояния цепей обмоток статора и ротора
- •4. Свойство саморегулирования асинхронных двигателей
- •Электромагнитный момент ад и его зависимость от величин скольжения и напряжения сети
- •6. Области применения синхронных электрических машин. Устройство трехфазной синхронной машины
- •7. Области применения двигателей постоянного тока. Способы возбуждения дпт
- •8. Принцип работы дпт. Электромагнитный момент. Свойство саморегулирования
- •1.Полупроводниковые материалы. Собственная и примесная электропроводности.
- •2. Электронно-дырочный переход и его свойства. Переход металл-полупроводник.
- •Полупроводниковые резисторы. Назначение, характеристики, параметры
- •4. Классификация полупроводниковых диодов. Условные графические и буквенные обозначения
- •5. Выпрямительные диоды: условное графическое и буквенное обозначения, вах , параметры
- •6. Тиристоры: динисторы, тринисторы, симисторы. Области применения. Условные графические обозначения. Устройство, принцип работы, вах. Основные параметры
- •1. Динистора 2. Тринистора
- •3. Симистора
- •2). Трехфазная мостовая схема выпрямителя
- •9. Сглаживающие фильтры. Коэффициент сглаживания, расчет параметров фильтров. Фильтры с активным элементом
- •10. Управляемые выпрямители. Временные диаграммы управляемых выпрямителей. Тиристорные преобразователи, как источники регулируемого напряжения. Схема управления дпт
- •11. Стабилизаторы напряжения. Параметрические и компенсационные стабилизаторы.
- •12. Биполярные транзисторы: условные графические изображения, устройство, режимы работы
- •13 .Схемы включения с об, оэ, ок , их сравнительный анализ
- •14. Основные характеристики, h-параметры биполярных транзисторов (для схемы с оэ)
- •15. Полевые транзисторы с управляющим р-n-переходом. Структура, принцип работы. Основные параметры, стокозатворные и выходные характеристики
- •17. Имс: маркировка, обозначение. Полупроводниковые, гибридные, аналоговые, цифровые имс
- •18.Однокаскадный усилитель на биполярном транзисторе с оэ. Назначение элементов схемы. Принцип работы. Статический и динамический режимы
- •19. Определение начальных условий, обеспечивающих заданный режим работы усилителя с оэ
- •20. Амплитудная, амплитудно-частотная и фазочастотная характеристики усилителей.
- •21. Определение коэффициентов усиления, входного и выходного сопротивлений каскада с общим эмиттером.
- •23. Обратные связи в усилителях и их влияние на параметры и характеристики усилителей.
- •24. Режимы работы усилительных каскадов.
- •25. Усилители постоянного тока. Дифференциальные усилители. Ду с симметричным выходом. Принцип работы, область применения.
- •26. Операционные усилители (оу): области применения, условное графическое изображение, структурная схема. Назначение элементов структурной схемы
- •27. Свойства идеального оу. Амплитудная характеристика. Режимы работы оу
- •28. Примеры построения аналоговых схем на основе оу: инвертирующий и неинвертирующий усилители, вычитатель, сумматоры, интеграторы, дифференциаторы, компараторы. Временные диаграммы
- •32. Ключевой режим транзистора. Ключи на биполярном и полевом транзисторах
- •33. Компараторы и мультивибраторы на основе оу. Принцип работы. Временные диаграммы. Понятие об одновибраторах
- •35. Реализация простых логических операций на базе электронных схем (логический базис)
- •36. Классификация и основные параметры логических элементов
- •37. Базовые логические элементы ттл и кмоп. Примеры схемной реализации. Принцип работы
- •38. Основные законы и тождества алгебры логики. Преобразование уравнений логических функций. Комбинационные логические устройства
- •39. Триггеры: определение, области применения, классификация. Назначение входов и выходов
- •40. Структурные схемы rs-триггеров (асинхронных и синхронных) с прямым и инверсным управлением. Таблицы состояний, временные диаграммы
- •43. Примеры построения д- , т-, rs- триггеров на основе jk- триггера
- •44. Элементы оптоэлектроники. Управляемые источники света. Фотоприемники и фотоизлучатели
- •45. Светодиоды, фотодиоды, фоторезисторы, фототранзисторы, фототиристоры. Оптроны. Условные графические изображения. Области применения. Основные параметры
1.Полупроводниковые материалы. Собственная и примесная электропроводности.
К полупроводникам относятся материалы, которые при комнатной температуре имеют удельное электрическое сопротивление от 10-5 до 1010 Ом*см (в полупроводниковой технике принято измерять сопротивление 1 см3 материала). Наиболее часто используются кремний, арсенид галлия, селен, германий, разные оксиды, сульфиды, нитриды и карбиды. В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается. На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь — это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются лишние электроны. Проводимость станет электронной, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n — 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости. Акцепторная примесь — это примесь с меньшей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Проводимость будет «дырочной», а полупроводник называют полупроводником р-типа. Например, для кремния акцепторной примесью является индий с валентностью п = 3. Каждый атом индия приведет к образованию лишней «дырки».
Схема с примесью донорных атомов
Схема с примесью акцепторных атомов
Схема собственной электропроводности
2. Электронно-дырочный переход и его свойства. Переход металл-полупроводник.
Если одна часть кристалла полупроводника имеет проводимость p–типа, а другая n–типа, то на границе между ними возникает p–n (электронно-дырочный) переход. Полупроводники p– и n–типа нейтральны. В месте их разделения П электроны диффундируют из области n–типа в область p–типа оставляя положительные ионы +ρ, а дырки – из области p–типа в область n–типа, оставляя отрицательные ионы -ρ. Между двойным слоем ионов действует поле EСОБ, создающее энергетический барьер. Некомпенсированные заряды ионов примесей в полупроводнике создают контактную разность потенциалов UK между p– и n–областями (~ 0,5 В). Чем выше потенциал, тем меньшее количество свободных носителей заряда могут его преодолеть, так как для этого требуется большая энергия. Навстречу диффузионному прямому току IПР направлен обратный ток не основных носителей зарядов, вызванный термогенерацией, IОБР: электронов из p– в n–область и дырок из n– в p–область, для которых потенциал UK не является препятствием. Когда IПР уменьшится из-за роста UK и станет равным IОБР, увеличение UK прекратится. Рис.1- потенциальный барьер в р-n переходе
Два типа контакта Ме-полупроводник: 1).выпрямляющие (диоды с барьером Шотки); 2).омические (т.е. подчиненные закону Ома) – не выпрямляющие – необходимые для контакта полупроводниковые приборы с проводами (коммутацией), подвода и отвода управляемых токов и напряжений. Если вероятность заполнения энергетического уровня в полупроводнике меньше, чем в металле, то при соприкосновении (контакте) часть электронов Ме перейдет в полупроводник. Это характерно для полупроводника «р». В результате в полупроводнике у границы число дырок уменьшится, обнажатся заряженные ионы «А-›› и возникшее на контакте поле притормозит следующие электроны. Это похоже на поле в n-p переходе, но возникший потенциал поменьше, заряженный слой тоньше. Для n-полупроводника заполненные уровни с электронами лежат выше, чем в Ме, и в контакте часть их стечет в металл. Донорные ионы D+ в полупроводнике создадут поле, втягивающее электроны назад. Зона проводимости изогнется вверх. Барьер на границах тоже возникает. Реально на прижимном контакте это сделать нельзя, на игольчатом или напыленном в вакууме – можно. Оба типа контакта имеют слой, обедненный основными носителями. Энергетическая зонная диаграмма контакта металл-полупроводник р-типа: а — металл; б - полупроводник p-типа; в - контакт металл – полупроводник.
16
17
