- •Питання до екзамену з дисципліни «Технічна термодинаміка і теплотехніка»
- •Основна термінологія технічної термодинаміки.
- •Історія розвитку термодинаміки.
- •Основні фізичні властивості рідини і газу.
- •Термодинамічна система і її робочі тіла.
- •Ідеальний газ. Ідеальний газ
- •Термодинаміка класичного ідеального газу
- •Термодинаміка Фермі-газу
- •Термодинаміка Бозе-газу
- •Термодинамічні параметри стану системи.
- •Термодинамічний процес.
- •Рівноважні, нерівноважні, оборотні і необоротні процеси.
- •Тиск і температура робочого тіла.
- •Одиниці вимірювання температури, абсолютна термодинамічна шкала температур. Одиниці виміру температури
- •13. Перший закон термодинаміки
- •14. Ізохоричний процес
- •Ентропія ізохоричного процесу
- •15. Ізобарний процес
- •Робота, внутрішня енергія та кількість теплоти при ізобарному процесі
- •16. Ізотермічний процес
- •Теорія ізотермічного процесу для ідеального газу
- •17. Адіабатичний процес
- •Робота при адіабатичному процесі.
- •12. Визначення зміни внутрішньої енергії і ентальпії у термодинамічному процесі ідеального газу.
- •18. Політропний процес
- •19. Реальний газ
- •20. Рівняння Ван-дер-Ваальса.
- •21. Критична точка реального газу.
- •22. Фазові перетворення речовини
- •24. Формула Клапейрона-Клаузіуса
- •25. Потрійна точка речовини
- •26. Процес пароутворення в рідині
- •27. Волога насичена пара
- •38. Зміна ентропії системи
- •41.Теплові двигуни
- •42. Теоретичні цикли теплових двигунів
- •43. Види необоротності у реальних циклах теплових двигунів.
- •44. Двигуни внутрішнього згоряння
- •Типи двигунів внутрішнього згоряння Поршневі двигуни
- •Бензинові двигуни
- •Дизельні двигуни
- •Газові двигуни
- •Газодизельні двигуни
- •Роторно-поршневий Комбінований двигун внутрішнього згоряння
- •45. Основні характеристики циклів двз
- •46 Термодинамічні процеси в двз.
- •47 Основні параметри циклу двз із змішаним підводом теплоти .
- •48 Основні параметри циклу двз з ізохорним підводом теплоти .
- •49 Шляхи підвищення термічного ккд двз.
- •50 Газотурбінні установки.
- •66. Найбільш важливі критерії подібності
- •67. Критеріальні рівняння подібності.
- •72 Абсолютно білі, чорні і сірі тіла.
- •73 Закон Стефана-Больцмана.
- •74 Теплообмін випромінюванням між поверхнями.
- •75 Теплообмін випромінюванням між поверхнями, які розділені екраном.
Робота, внутрішня енергія та кількість теплоти при ізобарному процесі
З визначення роботи слідує, що макроскопічна робота при нескінченно малій зміні об'єму на величину dV при ізобаричному процесі дорівнює:
Повна робота процесу визначається інтегралом від даного виразу:
де ΔV — зміна об'єму.
Розглядаючи графік ізобаричного процесу у координатах (p,V) отримати цей результат простіше. Графічно робота є площа фігури під кривою. У випадку ізобаричного процесу це площа прямокутника, яку знаходять за формулою, яку отримано в результаті інтегрування.
Якщо в останній формулі використати рівняння стану ідеального газу, то можна отримати такий результат:
Де, ν — кількість речовини, R — універсальна газова стала, ΔT — зміна температури.
Зміна внутрішньої енергії ідеального газу може бути знайдена за формулою:
де і — число ступенів вільності, яке залежить від кількості атомів у молекулі (3 для одноатомної (наприклад, водень), 5 для двоатомної (наприклад, кисень) і 6 для триатомної і більше (наприклад, молекула водяної пари)).
З визначення та формули теплоємності, формулу для внутрішньої енергії можна переписати у вигляді:
де
— молярна теплоємність при сталому
об'ємі.
Застосувавши перше начало термодинаміки можна знайти кількість теплоти при ізобаричному процесі:
Тепер до цієї формули підставимо значення роботи та зміни внутрішньої енергії:
Застосувавши рівняння Роберта Майєра () отримаємо:
де
— молярна теплоємність при сталому
тиску.
Теплоємність системи при ізобаричному процесі більша, ніж при ізохоричному, оскільки теплота потрібна не тільки для зміни внутрішньої енергії термодинамічної системи, а й для виконання цією системою роботи.
Всі формули, які подано вище виводилися з урахуванням незмінної маси речовини під час процесу, або відсутності параметра порядку при хімічній реакції.
16. Ізотермічний процес
Ізотермічний проце́с — фізичний процес, під час якого температура не змінюється.
Ізотермічний процес відбувається достатньо повільно для того, щоб температура підтримувалася сталою завдяки теплообміну із середовищем. При ізотермічному стисненні тіло віддає тепло в середовище, при ізотермічному розширенні — вбирає тепло із середовища.
Теорія ізотермічного процесу для ідеального газу
Згідно з рівнянням стану ідеального газу (або рівняння Клапейрона-Менделєєва), характеристики ідеального газу задовільняють рівність
де p — тиск, V — об'єм, m — маса, T — температура газу відповідно, μ — молярна маса газу, R — газова стала.
Газ сталої маси може перебувати в різних станах з різними параметрами:
Оскільки праві частини обох виразів однакові, то, порівнюючи їх ліві частини, отримаємо рівняння, справедливе для газу незмінної маси:
або
Останнє рівняння називають рівнянням Клапейрона (об'єднаним газовим законом).
Процеси, які відбуваються за незмінного значення одного з параметрів ідеального газу сталої маси m і молярної маси μ називають ізопроцесами. Оскільки жоден із параметрів газу не може бути строго фіксованим, то ізопроцес — це ідеалізована модель стану ідеального газу. Ізотермічним процесом називається процес, в якому маса газу, молярна маса газу та його температура є константами.
Якщо до ізотермічного процесу застосувати рівняння Клапейрона, то з урахуванням сталості температури Т1=Т2 воно набуде вигляду
або
тобто, для деякої маси газу добуток тиску газу на об'єм за незмінної температури є сталою величиною. Цей закон (закон Бойля-Маріотта) справедливий для будь-яких газів, які можна вважати ідеальними, а також для їхніх сумішей.
Графічно залежність тиску газу від об'єму при умові незмінності температури можна зобразити у вигляді кривої — ізотерми. Прикладами ізотермічного процесу є процес стискання повітря компресором, або розширення під поршнем насоса газу внаслідок відкачування його з посудини.
