Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗХИМ 15.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.4 Mб
Скачать

Охлаждение при закалке

Для получения требуемой структуры изделия охлаждают с различной скоростью, которая в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали.

Режим охлаждения должен исключить возникновение больших закалочных напряжений. При высоких скоростях охлаждения при закалке возникают внутренние напряжения, которые могут привести к короблению и растрескиванию.

Физико-химические процессы при отпуске

Отпуск является окончательной термической обработкой. Целью отпуска является повышение вязкости и пластичности, снижение твердости и уменьшение внутренних напряжений закаленных сталей (см. Закалка стали). С повышением температуры нагрева прочность обычно снижается, а пластичность и вязкость растут. Температуру отпуска выбирают, исходя из требуемой прочности конкретной детали.

Термическая обработка металла. Термическая обработка металлов и сплавов. Виды термической обработки металлов. Виды термообработки.

Различают три вида отпуска:

1. Низкий отпуск с температурой нагрева Тн = 150…300oС.

В результате его проведения частично снимаются закалочные напряжения. Получают структуру – мартенсит отпуска. Проводят для инструментальных сталей после закалки токами высокой частоты или после цементации.

2. Средний отпуск с температурой нагрева Тн = 300…450oС.

Получают структуру – троостит отпуска, сочетающую высокую твердость 40…45HRC c хорошей упругостью и вязкостью. Используется для изделий типа пружин, рессор.

3. Высокий отпуск с температурой нагрева Тн = 450…650oС..

Получают структуру, сочетающую достаточно высокую твердость и повышенную ударную вязкость (оптимальное сочетание свойств) – сорбит отпуска. Используется для деталей машин, испытывающих ударные нагрузки. Комплекс термической обработки, включающий закалку и высокий отпуск, называется улучшением

Основы термической и химико – термической обработки металлов

Термической обработкой называют процессы теплового воздей­ствия по определенным режимам с целью изменения структуры и свойств сплава. От термической обработки зависит качество и стой­кость в работе деталей и инструмента.

Основоположником теории и рациональных методов термической обработки стали является русский ученый Д. К. Чернов.

Теория термической обработки стали основана на общей теории фазовых превращений, протекающих в сплавах в твердом состоянии. Знание теории фазовых и структурных превращений, протекающих при нагреве и охлаждении стали с различной скоростью, позволяет управлять процессами термической обработки и получать сталь с необходимыми структурой и свойствами.

«Превращения в стали при нагреве»

Превращение перлита в аустенит. В исходном состоянии сталь представляет собой смесь фаз феррита и цементита. Затем начинается образо­вание мелких зерен аустенита (рис. 11, а), в которых растворяется цементит. Затем образовавшиеся зерна растут, зарождаются новые мелкие зерна аустенита (рис. 11, б, в) и продолжается растворение цементита. Процесс заканчивается заполнением объема бывшего пер­литного зерна зернами аустенита (рис. 11, г).

Рисунок 11 Схема образования аустенитных зерен

Превращение перлита в аустенит — процесс кристаллизацион­ного типа и носит диффузионный характер, так как сопровождается перемещением атомов углерода на расстояния больше межатомных.

Рост зерна аустенита при нагреве. Образующиеся при нагреве из зерен перлита зерна аустенита получаются мел­кими и называются начальными зернами аустенита. При повышении температуры происходит рост зерен и тем в большей степени, чем выше температура нагрева. Но склон­ность к росту зерен с повышением температуры у сталей различная. Стали, раскисленные в процессе выплавки кремнием и марганцем, обладают склонностью к непрерыв­ному росту зерна с повышением температуры. Такие стали назы­вают наследственно крупнозерни­стыми (рис. 12).

Стали, раскислен­ные в процессе выплавки дополни­тельно алюминием, не обнаружи­вают роста зерна при нагреве до значительно более высоких темпе­ратур (900—950 °С). Такие стали называют наследственно мелкозер­нистыми (рис. 12). Благоприятное влияние алюминия объясняется образованием ни­трида алюминия A1N, который в виде мелких включений располага­ется по границам зерен и тормозит их рост. При определенной темпе­ратуре происходит растворение включений в аустените, и зерна начи­нают расти очень быстро. Наследственную зернистость оценивают баллами по специальной шкале зернистости.

 

 

 

Рисунок 12 Схема роста зерна аустенита в наследственно мелкозернистой (а) и крупнозернистой (б) сталях.

 

«Превращения в стали при охлаждении»

Превращение аустенита в перлит может происходить только при температурах ниже 727° С Для распада аустенита должно быть его переохлаждение.

Образцы стали, нагретые до аустенитного состояния, быстро переносят в ванну с жидкой сре­дой, имеющей температуру ниже 7270 С и выдерживают до завер­шения превращения.

Видов термической обработки: собственно терми­ческая обработка—только термическое воздействие на сталь; термомеханическая —сочетание термического воздействия и пластической деформации; химико-термическая—сочетание термического и хими­ческого воздействия.

Собственно термическая обработка подразде­ляется на отжиг (первого и второго рода), закалку и отпуск.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]