- •3 Расчетно-конструктивный раздел
- •3.1 Расчет и конструирование металлодеревянной фермы треугольного очертания
- •3.1.1 Геометрические характеристики фермы
- •3.1.2 Сбор нагрузок
- •3.1.3 Статический расчет фермы
- •3.1.4 Расчет и конструирование верхнего пояса фермы
- •3.1.5 Расчет и конструирование нижнего пояса фермы
- •3.1.6 Расчет и конструирование средней стойки фермы
- •3.1.7 Расчет и конструирование раскоса фермы
- •3.2.3 Сбор нагрузок на 1м2 горизонтальной поверхности
- •3.2.4 Предварительное назначение размеров сечения марша.
- •3.2.5 Расчет по прочности сечений, нормальных к продольной оси элемента
- •3.2.6 Расчет по прочности на действие поперечных сил
- •3.2.7 Расчет т-образного косоура по трещиностойкости
- •3.2.8 Расчет т-образного косоура по деформациям
- •3.2.9 Расчет свеса марша Расчет свеса будем вести как балки жестко защемленной с одного конца
- •3.2.10 Расчет свеса марша по прочности
- •3.3 Определение усилий в ригеле поперечной рамы
- •3.3.1 Расчетная схема и нагрузки
- •3.3.2 Определение внутренних усилий в поперечной раме
- •3.3.3 Расчёт прочности ригеля по сечениям, нормальным к продольной оси
- •3.3.4 Расчет прочности ригеля по сечениям, наклонным к продольной оси
- •3.3.5 Конструирование арматуры ригеля
3.1.5 Расчет и конструирование нижнего пояса фермы
Нижний пояс работает на растяжение. Расчётное продольное усилие в нижнем поясе принимаем по таблице 3.1.3 сочетаний нагрузок:
(3
стержень). Нижний пояс фермы конструируем
из стали марки С255. Расчётное сопротивление
стали
Требуемая площадь сечения нижнего пояса определяем /6, стр.10/:
Принимаем
два равнополочных уголка 32×4мм (уголок
32×32×4 – ГОСТ_851-86), суммарной площадью
.
где,
– площадь сечения нижнего пояса
.
3.1.6 Расчет и конструирование средней стойки фермы
Растягивающая
сила, действующая в среднем стержне
(стойке) №15 равна:
,
взятая из таблицы 3.1.3 сочетания нагрузок
КН1, как максимальная сила, действующая
в стойках фермы. Т.к. стойка работает на
растяжение, то сечение принимается из
одиночной стальной арматуры. Принимаем
арматуры класса S400 с
нарезками на концах. Расчётное
сопротивление стали
.
Коэффициент
концентрации напряжений в нарезке:
определяется
:
.
В
зависимости от полученной площади
подбираем диаметр стальной арматуры:
диаметр = 32 мм с расчётной площадью
.
Т.к. условие выполняется, следовательно принимаем подобранное сечение стойки.
3.1.7 Расчет и конструирование раскоса фермы
Все
раскосы фермы работают на сжатие.
Подбирается и проверяется сечение
раскоса №19, так как в нём действует
наибольшая сжимающая сила:
Длина
раскоса №19:
.
Расчётная длина раскоса определяется по формуле /4, форм. 3.10/:
где, – коэффициент, учитывающий закрепление элемента и нагрузку, действующую на элемент /4, табл. 3.1/.
Предварительно
принимаем сечение раскоса /4, табл. 2.1/.
Ширину сечения раскоса принимаем такую
же как в верхнем поясе фермы
,
а толщину
,
в 4 слоя склеенных досок. Тогда высота
сечения будет:
Соответственно, площадь поперечного сечения:
Гибкость раскоса определяем по формуле /4, форм. 3.9/:
где,
-
радиус инерции сечения;
=
60,99 не превышает предельную гибкость
=
приведенной в таблице /5, табл. 7.2/.
В
соответствии с /5, п. 7.1.4.2/ элементы с
35 следует проверять на устойчивость:
где, – расчетное сжимающее напряжение, определяемое по формуле 7 /4, форм.3.5/:
– расчётное значение сопротивление сжатию.
/4, табл. 6.5/
– коэффициент продольного изгиба, определяемый в зависимости от гибкости элемента.
При
,
определяем по формуле /5, форм. 7.14/:
Следовательно, подставив данные в формулу /4, форм. 3.5/ получим:
Условие выполняется, следовательно устойчивость сжатого раскоса обеспечена и принятое сечение оставляем для дальнейших расчетов.
3.2 Расчет и конструирование лестничного марша
3.2.1 Краткое описание конструкции
Лестница
представляет собой конструкцию из
монолитного железобетона, основными
элементами которой являются ступени и
Т-образный косоур. Ширина марша – 1500
мм, длина - 2950мм, угол наклона марша –
27О.
Класс бетона
,
класс арматуры S400,
класс по условиям эксплуатации – X0.
Толщина защитного слоя 20 мм.
3.2.2 Расчет и конструирование Т-образных косоуров
Т-образный косоур представляет собой балочный элемент, рассчитываемый на изгиб как свободно опертая балка на действующие нагрузки с учетом уклона марша.
Рис.3.2.2 К расчету Т-образного косоура
3.2.2.1. Определение расчетных длин
Расчетный полет lef косоура принимаем равным расстоянию между осями его опор (рис.3.2.3.)
рис.3.2.3. Расчетная схема Т-образного косоура
1) Постоянная нагрузка от собственного веса Т-образного косоура равна:
,
где
плотность
бетона, кг/м3;
= 2500 кг/м3 =
25кН/м3;
кН/м2
