- •1.История развития поршневых двигателей и требования к ним.
- •2. Общее устройство и принцип работы поршневого двигателя внутреннего сгорания.
- •3. Основные понятия и определения.
- •4. Классификация двигателей.
- •5. Понятие о термодинамическом процессе. Рабочее тело и параметры его состояния
- •6.Законы идеальных газов
- •7.Уравнение состояния идеальных газов
- •8.Первый закон термодинамики
- •9.Внутренняя энергия
- •10.Обратимые и необратимые процессы
- •11.Изохорный процесс
- •12.Изобарный процесс
- •13.Изотермический процесс
- •14.Адиабатный процесс
- •15.Политропный процесс
- •16. Второй Закон Термодинамики, его физическая основа.
- •17. Циклы теплового двигателя.
- •18. Цикл Карно
- •19. Принцип работы двс
- •20. Цикл с подводом теплоты при постоянном объеме
- •21. Параметры характерных точек индикаторной диаграммы
- •22. Определение внешней теплоты и работы цикла
- •23. Термический кпд цикла
- •24. Цикл с подводом теплоты при постоянном давлении
- •25. Цикл со смешанным подводом теплоты
- •26. Сравнение различных циклов двс
- •27. Отличие действительных циклов четырехтактных двигателей от теоретических
- •28. Индикаторная диаграмма
- •29. Процессы газообмена
- •30. Влияние фаз газораспределения на процессы газообмена
- •31. Параметры процесса газообмена
- •32. Факторы, влияющие на процессы газообмена
- •33. Токсичность отработавших газов и пути предотвращения загрязнения окружающей среды
- •34. Процесс сжатия
- •35. Скорость сгорания
- •36. Химические реакции при сгорании
- •37. Процесс сгорания в карбюраторном двигателе
- •38. Факторы, влияющие на процесс сгорания в карбюраторном двигателе
- •39. Детонация
- •40. Процесс сгорания топливной смеси в дизеле
- •41. Жесткая работа дизеля
- •42. Процесс расширения
- •43. Параметры процесса расширения
- •44. Действительная индикаторная диаграмма
- •45. Индикаторные показатели
- •46. Факторы влияющие на индикаторный кпд двигателя
- •47. Механические потери
- •48. Эффективные показатели
- •49. Удельный эффективный расход топлива
- •50. Литровая мощность
- •51. Способы повышения мощности двигателя
- •52. Уравнение теплового баланса двигателя
- •53. Влияние различных факторов на тепловой баланс двигателя
- •54. Физические свойства жидкости
- •55. Поток жидкости и его параметры
- •56. Основные законы гидродинамики. Уравнение неразрывности потока и уравнение Бернулли
- •57. Истечение жидкости из малых отверстий и насадок
- •58. Требования, предъявляемые к карбюратору
- •59 . Элементарный карбюратор
- •60. Течение воздуха по впускному тракту
- •61. Истечение топлива из жиклера
- •62. Характеристики элементарного и идеального карбюраторов
- •63. Главная дозирующая система
- •64. Вспомогательные устройства
- •65. Классификация камер сгорания
- •66. Способы смесеобразования
- •67. Пленочный и объемно-пленочный способы смесеобразования
- •68. Сравнительная оценка различных способов смесеобразования
- •69. Распыление топлива
- •70. Образование горючей смеси и воспламенение топлива
- •71. Типы кшм
- •72. Кинематика центрального кшм
- •11.2.3. Ускорение поршня
- •73. Отношение хода поршня к диаметру цилиндра
- •75. Силы инерции
- •76. Суммарные силы, действующие в кшм
- •77. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров
- •78. Назначение кшм и принцип работы.
- •79. Состав и устройство узлов кшм.
- •80. Общие сведения о системе охлаждения двигателя
- •81. Жидкостное охлаждение двигателя
- •82. Воздушное охлаждение двигателя
- •83. Расчёт системы охлаждения двигателя
- •84. Общие сведения о системе смазки
- •85. Системы смазки
- •86. Состав системы смазки
- •87. Масляные насосы
- •88. Редукционные клапаны
- •89. Масляные фильтры
- •90. Масляные радиаторы
- •91 Вентиляция картера
- •92. Моторные масла и требования к ним
- •93.Назначение и принцип работы механизма газораспределения
- •94 Состав механизма газораспределения
- •95. Привод клапанов
- •96. Привод распределительных валов
8.Первый закон термодинамики
Первый закон термодинамики: теплота может превращаться в механическую работу, а работа в теплоту лишь в строго эквивалентных количествах, причем количество теплоты, полученное рабочим телом от какого-либо источника тепла, равно сумме приращения внутренней энергии этого тела и количества совершенной им работы, т. е.
(1.4)
где Q — подведенная к рабочему телу теплота;
А — коэффициент пропорциональности;
L — работа, произведенная рабочим телом в результате подвода теплоты;
U1 — внутренняя энергия рабочего тела в начале подвода теплоты;
U2 — внутренняя энергия рабочего тела в конце подвода теплоты.
В 1843—1860 гг. английский физик Джоуль провел опыт по установлению соотношения между работой, затраченной при выделении теплоты и количеством выделенной теплоты. Ему удалось вычислить величину A = 0,002345 ккал (кгс • м), которая называется тепловым эквивалентом работы. Также он вычислил и механический эквивалент теплоты I:
В настоящее время для измерения количества теплоты и работы используются различные единицы, соотношения между которыми приведены в табл. 1.
Таблица 1. Соотношения между единицами измерения теплоты и работы
Единица |
Дж |
энг |
кгс•м |
ккал |
кВт•ч |
Дж |
- |
107 |
0,101972 |
2,4•10-4 |
2,7778•10-7 |
эрг |
10-7 |
- |
10,1972•10-9 |
24•10-12 |
27,778•10-15 |
кгс•м |
9,80665 |
98,0665•106 |
- |
2,3•10-3 |
2,7207•10-6 |
ккал |
4186,8 |
41,868•109 |
426,935 |
- |
1,163•10-3 |
кВт•ч |
3,6•106 |
36•1012 |
367 098 |
859,862 |
- |
Для
рабочего тела массой 1 кг уравнение
первого закона термодинамики примет
вид:
где q — удельная теплота, подводимая к рабочему телу или отводимая от него;
l — удельная работа изменения объема рабочего тела;
u1и u2 —удельная внутренняя энергия в начале и конце подвода теплоты соответственно.
В термодинамике принято следующее:
• теплоту Q считать положительной, если она подводится к газу и отрицательной, если она отводится;
• изменение внутренней энергии ∆U считать положительным, если температура газа растет, и отрицательным, если она падает;
• работу L считать положительной, если газ расширяется и отрицательной, если газ сжимается под действием внешних сил.
9.Внутренняя энергия
Внутренняя энергия состоит из внутренней кинетической и внутренней потенциальной энергий.Первая — результат хаотического движения частиц тела, с увеличением скорости которых возрастает и внутренняя кинетическая энергия.
Так как температура тела определяется скоростью движения его частиц (молекул), то увеличение температуры тела означает увеличение его внутренней кинетической энергии.
Внутренняя потенциальная энергия связана с силами взаимодействия между частицами вещества.
Изменение удельной внутренней энергии в процессе подвода или отвода теплоты может быть выражено уравнением
где ∆uк — изменение кинетической энергии газа,
∆uп — изменение потенциальной энергии газа.
Так как силы взаимодействия между молекулами идеального газа отсутствуют, то и его потенциальная энергия равна нулю. Поэтому внутренняя энергия идеального газа зависит только от его температуры.
Поскольку температура идеального газа определяется внутренней кинетической энергией, а температура тела является параметром его состояния, то и внутренняя энергия является параметром его состояния.
Если в результате подвода теплоты рабочее тело переходит из первого состояния во второе, то подводимая теплота q1,2 будет равна u2-u1.
На основании формулы (3) можно записать
