- •1.История развития поршневых двигателей и требования к ним.
- •2. Общее устройство и принцип работы поршневого двигателя внутреннего сгорания.
- •3. Основные понятия и определения.
- •4. Классификация двигателей.
- •5. Понятие о термодинамическом процессе. Рабочее тело и параметры его состояния
- •6.Законы идеальных газов
- •7.Уравнение состояния идеальных газов
- •8.Первый закон термодинамики
- •9.Внутренняя энергия
- •10.Обратимые и необратимые процессы
- •11.Изохорный процесс
- •12.Изобарный процесс
- •13.Изотермический процесс
- •14.Адиабатный процесс
- •15.Политропный процесс
- •16. Второй Закон Термодинамики, его физическая основа.
- •17. Циклы теплового двигателя.
- •18. Цикл Карно
- •19. Принцип работы двс
- •20. Цикл с подводом теплоты при постоянном объеме
- •21. Параметры характерных точек индикаторной диаграммы
- •22. Определение внешней теплоты и работы цикла
- •23. Термический кпд цикла
- •24. Цикл с подводом теплоты при постоянном давлении
- •25. Цикл со смешанным подводом теплоты
- •26. Сравнение различных циклов двс
- •27. Отличие действительных циклов четырехтактных двигателей от теоретических
- •28. Индикаторная диаграмма
- •29. Процессы газообмена
- •30. Влияние фаз газораспределения на процессы газообмена
- •31. Параметры процесса газообмена
- •32. Факторы, влияющие на процессы газообмена
- •33. Токсичность отработавших газов и пути предотвращения загрязнения окружающей среды
- •34. Процесс сжатия
- •35. Скорость сгорания
- •36. Химические реакции при сгорании
- •37. Процесс сгорания в карбюраторном двигателе
- •38. Факторы, влияющие на процесс сгорания в карбюраторном двигателе
- •39. Детонация
- •40. Процесс сгорания топливной смеси в дизеле
- •41. Жесткая работа дизеля
- •42. Процесс расширения
- •43. Параметры процесса расширения
- •44. Действительная индикаторная диаграмма
- •45. Индикаторные показатели
- •46. Факторы влияющие на индикаторный кпд двигателя
- •47. Механические потери
- •48. Эффективные показатели
- •49. Удельный эффективный расход топлива
- •50. Литровая мощность
- •51. Способы повышения мощности двигателя
- •52. Уравнение теплового баланса двигателя
- •53. Влияние различных факторов на тепловой баланс двигателя
- •54. Физические свойства жидкости
- •55. Поток жидкости и его параметры
- •56. Основные законы гидродинамики. Уравнение неразрывности потока и уравнение Бернулли
- •57. Истечение жидкости из малых отверстий и насадок
- •58. Требования, предъявляемые к карбюратору
- •59 . Элементарный карбюратор
- •60. Течение воздуха по впускному тракту
- •61. Истечение топлива из жиклера
- •62. Характеристики элементарного и идеального карбюраторов
- •63. Главная дозирующая система
- •64. Вспомогательные устройства
- •65. Классификация камер сгорания
- •66. Способы смесеобразования
- •67. Пленочный и объемно-пленочный способы смесеобразования
- •68. Сравнительная оценка различных способов смесеобразования
- •69. Распыление топлива
- •70. Образование горючей смеси и воспламенение топлива
- •71. Типы кшм
- •72. Кинематика центрального кшм
- •11.2.3. Ускорение поршня
- •73. Отношение хода поршня к диаметру цилиндра
- •75. Силы инерции
- •76. Суммарные силы, действующие в кшм
- •77. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров
- •78. Назначение кшм и принцип работы.
- •79. Состав и устройство узлов кшм.
- •80. Общие сведения о системе охлаждения двигателя
- •81. Жидкостное охлаждение двигателя
- •82. Воздушное охлаждение двигателя
- •83. Расчёт системы охлаждения двигателя
- •84. Общие сведения о системе смазки
- •85. Системы смазки
- •86. Состав системы смазки
- •87. Масляные насосы
- •88. Редукционные клапаны
- •89. Масляные фильтры
- •90. Масляные радиаторы
- •91 Вентиляция картера
- •92. Моторные масла и требования к ним
- •93.Назначение и принцип работы механизма газораспределения
- •94 Состав механизма газораспределения
- •95. Привод клапанов
- •96. Привод распределительных валов
6.Законы идеальных газов
В XVII—XIX-x столетиях исследователями, изучавшими поведение газов при давлениях, близких к атмосферному, опытным путем были установлены важнейшие закономерности.
В 1662 г. Р. Бойлем, а в 1676 г. независимо от него Э. Мариоттом было доказано, что при постоянной температуре произведение давления газа на его объем постоянно, т. е. в изотермическом процессе расширения или сжатия газа
Иначе говоря, при постоянной температуре удельные объемы газа обратно пропорциональны его давлениям:
и
(приТ
= const),
где v1 и v2 — удельные объемы в начальном и конечном состояниях газа;
р1 и р2 — соответствующие им давления.
В 1802 г. французский ученый Гей-Люссак открыл закон, согласно которому объем данной массы газа при постоянном давлении меняется линейно с температурой, т. е. для начального и конечного состояний газа
За 15 лет до того, как Гей-Люссак открыл свой закон, французский физик Шарль доказал, что при постоянном удельном объеме изменение давления газа прямо пропорционально его абсолютным температурам:
(приv
= const),
или
7.Уравнение состояния идеальных газов
Законы Бойля—Мариотта, Гей-Люссака и Шарля устанавливают связь только между двумя из трех основных параметров газа р, v иТ при условии, что значение третьего параметра остается постоянным. Уравнение состояния идеального газа устанавливает связь между всеми тремя основными его параметрами.
Допустим, что идеальный газ, заключенный в цилиндре с поршнем имеет параметры p1, v1 и T1, (рис. 2, а). Если уменьшить давление газа в цилиндре и подвести к нему некоторое количествотеплоты, то газ перейдет в новое состояние, где будут иметь место параметры р2, v 2 и Т2 (рис. 2, б).
Рис. 2. Иллюстрация уравнения состояния идеального газа
Чтобы установить связь между начальным и конечным состояниями газа, осуществим переход из первого состояния в последнее двумя промежуточными операциями. Сначала уменьшим давление газа от р1 до р2, поддерживая температуру T1 постоянной путем подвода теплоты к газу. Тогда газ окажется в промежуточном состоянии (рис. 2, в) и будет иметь параметры р2, v3 и T1. Затем будем подогревать газ так, чтобы он продолжал расширяться, сохраняя свое давление неизменным, его температура при этом повысится до Т2(рис. 2, б).
Сопоставим эти три состояния газа. Так как в первом состоянии и третьем температуры одинаковы, то между удельными объемами и давлением газа в этих состояниях должна по закону Бойля—Мариотта существовать следующая связь:
,
тогда
.
Так как в третьем и втором состояниях давления одинаковы, то по закону Гей-Люссака
откуда
Тогда
или
.
Таким образом, отношения произведений давления на удельный объем к абсолютной температуре в любом состоянии газа равны между собой:
Эту постоянную величину называют удельной газовой постоянной. Обозначив ее буквой R, получим
или
. (1.1)
Уравнение (1.1) называется уравнением идеального газа, или уравнением Клайперона.
Для использования уравнения Клайперона необходимо определить численное значение газовой постоянной для данного газа по справочным материалам. Газовая постоянная становится универсальной, т. е. одинаковой для всех газов, если количество газа выразить в киломолях. Умножив левую и правую часть уравнения (1.1) намыссу 1кмоля, получим:
,
где μ — молекулярная масса газа.
На основании закона А. Авогадро, который устанавливает, что при одинаковых температурах и одинаковых давлениях равные объемы различных идеальных газов содержат одинаковое число молекул, было установлено значение универсальной газовой постоянной:
.
Для 1 кмоля газа уравнение состояния можно представить как
(1.2)
где Vμ — объем 1 кмоль газа.
Уравнение (1.2) носит название уравнения Клайперона— Менделеева. Зная значение относительной молекулярной массы μ, можно определить газовую постоянную любого газа:
