- •1.История развития поршневых двигателей и требования к ним.
- •2. Общее устройство и принцип работы поршневого двигателя внутреннего сгорания.
- •3. Основные понятия и определения.
- •4. Классификация двигателей.
- •5. Понятие о термодинамическом процессе. Рабочее тело и параметры его состояния
- •6.Законы идеальных газов
- •7.Уравнение состояния идеальных газов
- •8.Первый закон термодинамики
- •9.Внутренняя энергия
- •10.Обратимые и необратимые процессы
- •11.Изохорный процесс
- •12.Изобарный процесс
- •13.Изотермический процесс
- •14.Адиабатный процесс
- •15.Политропный процесс
- •16. Второй Закон Термодинамики, его физическая основа.
- •17. Циклы теплового двигателя.
- •18. Цикл Карно
- •19. Принцип работы двс
- •20. Цикл с подводом теплоты при постоянном объеме
- •21. Параметры характерных точек индикаторной диаграммы
- •22. Определение внешней теплоты и работы цикла
- •23. Термический кпд цикла
- •24. Цикл с подводом теплоты при постоянном давлении
- •25. Цикл со смешанным подводом теплоты
- •26. Сравнение различных циклов двс
- •27. Отличие действительных циклов четырехтактных двигателей от теоретических
- •28. Индикаторная диаграмма
- •29. Процессы газообмена
- •30. Влияние фаз газораспределения на процессы газообмена
- •31. Параметры процесса газообмена
- •32. Факторы, влияющие на процессы газообмена
- •33. Токсичность отработавших газов и пути предотвращения загрязнения окружающей среды
- •34. Процесс сжатия
- •35. Скорость сгорания
- •36. Химические реакции при сгорании
- •37. Процесс сгорания в карбюраторном двигателе
- •38. Факторы, влияющие на процесс сгорания в карбюраторном двигателе
- •39. Детонация
- •40. Процесс сгорания топливной смеси в дизеле
- •41. Жесткая работа дизеля
- •42. Процесс расширения
- •43. Параметры процесса расширения
- •44. Действительная индикаторная диаграмма
- •45. Индикаторные показатели
- •46. Факторы влияющие на индикаторный кпд двигателя
- •47. Механические потери
- •48. Эффективные показатели
- •49. Удельный эффективный расход топлива
- •50. Литровая мощность
- •51. Способы повышения мощности двигателя
- •52. Уравнение теплового баланса двигателя
- •53. Влияние различных факторов на тепловой баланс двигателя
- •54. Физические свойства жидкости
- •55. Поток жидкости и его параметры
- •56. Основные законы гидродинамики. Уравнение неразрывности потока и уравнение Бернулли
- •57. Истечение жидкости из малых отверстий и насадок
- •58. Требования, предъявляемые к карбюратору
- •59 . Элементарный карбюратор
- •60. Течение воздуха по впускному тракту
- •61. Истечение топлива из жиклера
- •62. Характеристики элементарного и идеального карбюраторов
- •63. Главная дозирующая система
- •64. Вспомогательные устройства
- •65. Классификация камер сгорания
- •66. Способы смесеобразования
- •67. Пленочный и объемно-пленочный способы смесеобразования
- •68. Сравнительная оценка различных способов смесеобразования
- •69. Распыление топлива
- •70. Образование горючей смеси и воспламенение топлива
- •71. Типы кшм
- •72. Кинематика центрального кшм
- •11.2.3. Ускорение поршня
- •73. Отношение хода поршня к диаметру цилиндра
- •75. Силы инерции
- •76. Суммарные силы, действующие в кшм
- •77. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров
- •78. Назначение кшм и принцип работы.
- •79. Состав и устройство узлов кшм.
- •80. Общие сведения о системе охлаждения двигателя
- •81. Жидкостное охлаждение двигателя
- •82. Воздушное охлаждение двигателя
- •83. Расчёт системы охлаждения двигателя
- •84. Общие сведения о системе смазки
- •85. Системы смазки
- •86. Состав системы смазки
- •87. Масляные насосы
- •88. Редукционные клапаны
- •89. Масляные фильтры
- •90. Масляные радиаторы
- •91 Вентиляция картера
- •92. Моторные масла и требования к ним
- •93.Назначение и принцип работы механизма газораспределения
- •94 Состав механизма газораспределения
- •95. Привод клапанов
- •96. Привод распределительных валов
60. Течение воздуха по впускному тракту
Конструктивно воздушный канал карбюратора и впускной тракт представляют собой сложный трубопровод с целым рядом местных сопротивлений, на преодоление которых затрачивается часть энергии потока. Наиболее широкая часть воздушного канала находится на входе в карбюратор (сечение А—А) (рис. 2), наиболее узкая — в сечении Б—Б (минимальный диаметр диффузора).
Рис. 7.2. Схема воздушного канала карбюратора
Если пренебречь изменением плотности воздуха по длине впускного тракта, т. е. рассматривать воздух как несжимаемую жидкость, то согласно уравнению Бернулли
где h0 и hд — высота сечения на входе в карбюратор и высота сечения минимального диаметра диффузора соответственно относительно уровня, принятого за начало отсчета;
υ0 и υд — скорости воздуха на входе в канал и в самом узком сечении диффузора соответственно;
р0 и рд — давления в вышеуказанных сечениях;
ξ — коэффициент сопротивления впускного тракта на участке от входа в канал до минимального сечения диффузора.
Учитывая небольшой удельный вес воздуха и незначительную разность уровней между рассматриваемыми сечениями можно принять, что
.
Считая, что скорость воздуха на входе в канал равна 0, получим
(1)
где ∆рд — разряжение в горловине диффузора ∆рд = р0 – рд.
Из уравнения (1) получим скорость воздуха в диффузоре:
.
Обозначив
1/
через φс,
получим
(2)
где φс — скоростной коэффициент, учитывающий потери скорости из-за гидравлических сопротивлений впускного тракта, а также поправку на сжимаемость воздуха, равный 0,75—0,9.
Если скорость воздуха в сечении диффузора составляет 150—200 м/с, то разряжение в диффузоре составит 20—35 кПа. Следовательно, давление рд, действующее на топливо в распылителе (см. рис. 1), становится меньше давления р0 в поплавковой камере. Под действием разности этих давлений ∆рд = р0 – рл происходит истечение топлива из распылителей со скоростью примерно в 25 раз меньшей скорости воздуха, что обеспечивает хорошее распыление топлива и перемешивание его с воздухом.
Скорость истечения топлива можно определить и по уравнению Бернулли:
(3)
где φж — скоростной коэффициент топлива, проходящего через жиклер (φж равен 0,7—0,85);
ρт — плотность топлива (для бензинов ρт равно 690—810 кг/м3).
Так как разряжение в диффузоре рд определяет не только расход воздуха, но и истечение топлива, то при конструировании карбюратора стремятся к тому, чтобы это разряжение было наименьшим и в то же время обеспечивало поступление топлива из жиклера, распыление и достаточное испарение.
При площади минимального проходного сечения диффузора fд количество воздуха, проходящего по воздушному каналу, определяется уравнением
(4)
где μд — коэффициент расхода диффузора.
Величина μд определяется экспериментально и зависит от формы диффузора, состояния его поверхности, сопротивления на входе воздушного канала, разряжения и т. п. примерно равно 0,7—0,8.
Современные карбюраторы имеют два или даже три диффузора, расположенные последовательно. При этом распылитель устанавливают в области наибольшего разряжения. В последующих диффузорах происходит плавное уменьшение разряжения.
Применение многодиффузорных карбюраторов дает наибольший эффект на больших нагрузках. На малых нагрузках разряжение у распылителя уменьшается, и распыливание топлива ухудшается.
