- •1.История развития поршневых двигателей и требования к ним.
- •2. Общее устройство и принцип работы поршневого двигателя внутреннего сгорания.
- •3. Основные понятия и определения.
- •4. Классификация двигателей.
- •5. Понятие о термодинамическом процессе. Рабочее тело и параметры его состояния
- •6.Законы идеальных газов
- •7.Уравнение состояния идеальных газов
- •8.Первый закон термодинамики
- •9.Внутренняя энергия
- •10.Обратимые и необратимые процессы
- •11.Изохорный процесс
- •12.Изобарный процесс
- •13.Изотермический процесс
- •14.Адиабатный процесс
- •15.Политропный процесс
- •16. Второй Закон Термодинамики, его физическая основа.
- •17. Циклы теплового двигателя.
- •18. Цикл Карно
- •19. Принцип работы двс
- •20. Цикл с подводом теплоты при постоянном объеме
- •21. Параметры характерных точек индикаторной диаграммы
- •22. Определение внешней теплоты и работы цикла
- •23. Термический кпд цикла
- •24. Цикл с подводом теплоты при постоянном давлении
- •25. Цикл со смешанным подводом теплоты
- •26. Сравнение различных циклов двс
- •27. Отличие действительных циклов четырехтактных двигателей от теоретических
- •28. Индикаторная диаграмма
- •29. Процессы газообмена
- •30. Влияние фаз газораспределения на процессы газообмена
- •31. Параметры процесса газообмена
- •32. Факторы, влияющие на процессы газообмена
- •33. Токсичность отработавших газов и пути предотвращения загрязнения окружающей среды
- •34. Процесс сжатия
- •35. Скорость сгорания
- •36. Химические реакции при сгорании
- •37. Процесс сгорания в карбюраторном двигателе
- •38. Факторы, влияющие на процесс сгорания в карбюраторном двигателе
- •39. Детонация
- •40. Процесс сгорания топливной смеси в дизеле
- •41. Жесткая работа дизеля
- •42. Процесс расширения
- •43. Параметры процесса расширения
- •44. Действительная индикаторная диаграмма
- •45. Индикаторные показатели
- •46. Факторы влияющие на индикаторный кпд двигателя
- •47. Механические потери
- •48. Эффективные показатели
- •49. Удельный эффективный расход топлива
- •50. Литровая мощность
- •51. Способы повышения мощности двигателя
- •52. Уравнение теплового баланса двигателя
- •53. Влияние различных факторов на тепловой баланс двигателя
- •54. Физические свойства жидкости
- •55. Поток жидкости и его параметры
- •56. Основные законы гидродинамики. Уравнение неразрывности потока и уравнение Бернулли
- •57. Истечение жидкости из малых отверстий и насадок
- •58. Требования, предъявляемые к карбюратору
- •59 . Элементарный карбюратор
- •60. Течение воздуха по впускному тракту
- •61. Истечение топлива из жиклера
- •62. Характеристики элементарного и идеального карбюраторов
- •63. Главная дозирующая система
- •64. Вспомогательные устройства
- •65. Классификация камер сгорания
- •66. Способы смесеобразования
- •67. Пленочный и объемно-пленочный способы смесеобразования
- •68. Сравнительная оценка различных способов смесеобразования
- •69. Распыление топлива
- •70. Образование горючей смеси и воспламенение топлива
- •71. Типы кшм
- •72. Кинематика центрального кшм
- •11.2.3. Ускорение поршня
- •73. Отношение хода поршня к диаметру цилиндра
- •75. Силы инерции
- •76. Суммарные силы, действующие в кшм
- •77. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров
- •78. Назначение кшм и принцип работы.
- •79. Состав и устройство узлов кшм.
- •80. Общие сведения о системе охлаждения двигателя
- •81. Жидкостное охлаждение двигателя
- •82. Воздушное охлаждение двигателя
- •83. Расчёт системы охлаждения двигателя
- •84. Общие сведения о системе смазки
- •85. Системы смазки
- •86. Состав системы смазки
- •87. Масляные насосы
- •88. Редукционные клапаны
- •89. Масляные фильтры
- •90. Масляные радиаторы
- •91 Вентиляция картера
- •92. Моторные масла и требования к ним
- •93.Назначение и принцип работы механизма газораспределения
- •94 Состав механизма газораспределения
- •95. Привод клапанов
- •96. Привод распределительных валов
35. Скорость сгорания
В действительных циклах работы двигателя рабочее тело нагревается в результате сгорания, которое начинается в конце сжатия и происходит в основном в начальный период расширения. При этом химическая энергия топлива превращается в тепловую, которая в свою очередь частично преобразуется в механическую работу.
В качестве топлива для поршневых ДВС широко используются продукты переработки нефти, которые представляют собой различные углеводородные соединения. В этом случае процесс сгорания является химической реакцией соединения углерода и водорода с кислородом. Этот процесс имеет несколько стадий и сопровождается образованием различных промежуточных продуктов,которые в ряде случаев способствуют дальнейшему развитию реакций, выполняя роль катализаторов.
Для воспламенения топлива необходимо повысить кинетическую энергию молекул до такого уровня, при котором скорость реакции резко возрастет, что приведет к возникновению цепной реакции окисления. В зависимости от способа повышения энергии реагирующих молекул различают принудительное воспламенение и самовоспламенение.
При принудительном воспламенении пламя образуется вследствие сильного нагрева небольшого объема рабочей смеси от постороннего источника тепловой энергии, например электрического разряда, пламени и т. п.
При самовоспламенении пламя образуется вследствие разогрева до определенной температуры всей рабочей смеси. Это достигается предварительным сжатием рабочего тела, поэтому такое воспламенение называется воспламенением от сжатия.
Несмотря на различия способов воспламенения, механизм воспламенения одинаков и заключается в прогрессирующем самоускорении химических реакций, что в конечном итоге сводится к достижению температуры воспламенения отдельных очагов в камере сгорания.
Из появившихся очагов начального воспламенения пламя распространяется по всему объему камеры сгорания. Под распространением пламени понимается последовательное принудительное воспламенение слоев свежего заряда рабочей смеси. Процесс сгорания каждого слоя проходит в узкой зоне, которая разделяет несгоревшую смесь от продуктов сгорания. Эта зона называется фронтом пламени. Путь, который проходит фронт пламени в единицу времени называется скоростью распространения пламени.
Скорость распространения пламени по камере сгорания во многих случаях зависит от состава горючей смеси, которая характеризуется коэффициентом избытка воздуха.
Коэффициентом избытка воздуха называется отношение количества воздуха действительно находящегося в смеси к количеству воздуха, которое теоретически требуется для полного сгорания всего находящегося в ней топлива:
, (3.20)
где GB — часовой расход воздуха;
l0 — количество воздуха теоретически необходимое для сгорания одного килограмма топлива (для нефтяных топлив он составляет примерно 14,8 кг);
GТ — часовой расход топлива.
Наибольшая скорость сгорания в бензовоздушной смеси достигается при коэффициенте избытка воздуха от 0,85 до 0,9, так как в этом случае температура газов во фронте пламени становится максимальной и способствует ускорению прогрева и воспламенению прилегающих слоев свежей рабочей смеси.
При сильном обеднении смеси (α> 1), как и при сильном обогащении (α< 1) скорость сгорания значительно снижается вплоть до прекращения воспламенения.
Составы переобогащенной и переобедненной горючих смесей, при которых пламя гаснет, называются соответственно верхним и нижним пределами воспламенения. Эти пределы зависят от свойств топлива и условий горения. В двигателях с искровым воспламенением при использовании нефтяных топлив эти пределы составляют: αmin = 0,3; αmax = 1,3. При наличии в смеси остаточных газов пределы воспламенения сужаются.
Для своевременного завершения тепловыделения в камере сгорания необходимо чтобы скорость сгорания была 30—50 м/с. Для этого свежий заряд подвергается интенсивному завихрению (турбулизации).
