- •1.История развития поршневых двигателей и требования к ним.
- •2. Общее устройство и принцип работы поршневого двигателя внутреннего сгорания.
- •3. Основные понятия и определения.
- •4. Классификация двигателей.
- •5. Понятие о термодинамическом процессе. Рабочее тело и параметры его состояния
- •6.Законы идеальных газов
- •7.Уравнение состояния идеальных газов
- •8.Первый закон термодинамики
- •9.Внутренняя энергия
- •10.Обратимые и необратимые процессы
- •11.Изохорный процесс
- •12.Изобарный процесс
- •13.Изотермический процесс
- •14.Адиабатный процесс
- •15.Политропный процесс
- •16. Второй Закон Термодинамики, его физическая основа.
- •17. Циклы теплового двигателя.
- •18. Цикл Карно
- •19. Принцип работы двс
- •20. Цикл с подводом теплоты при постоянном объеме
- •21. Параметры характерных точек индикаторной диаграммы
- •22. Определение внешней теплоты и работы цикла
- •23. Термический кпд цикла
- •24. Цикл с подводом теплоты при постоянном давлении
- •25. Цикл со смешанным подводом теплоты
- •26. Сравнение различных циклов двс
- •27. Отличие действительных циклов четырехтактных двигателей от теоретических
- •28. Индикаторная диаграмма
- •29. Процессы газообмена
- •30. Влияние фаз газораспределения на процессы газообмена
- •31. Параметры процесса газообмена
- •32. Факторы, влияющие на процессы газообмена
- •33. Токсичность отработавших газов и пути предотвращения загрязнения окружающей среды
- •34. Процесс сжатия
- •35. Скорость сгорания
- •36. Химические реакции при сгорании
- •37. Процесс сгорания в карбюраторном двигателе
- •38. Факторы, влияющие на процесс сгорания в карбюраторном двигателе
- •39. Детонация
- •40. Процесс сгорания топливной смеси в дизеле
- •41. Жесткая работа дизеля
- •42. Процесс расширения
- •43. Параметры процесса расширения
- •44. Действительная индикаторная диаграмма
- •45. Индикаторные показатели
- •46. Факторы влияющие на индикаторный кпд двигателя
- •47. Механические потери
- •48. Эффективные показатели
- •49. Удельный эффективный расход топлива
- •50. Литровая мощность
- •51. Способы повышения мощности двигателя
- •52. Уравнение теплового баланса двигателя
- •53. Влияние различных факторов на тепловой баланс двигателя
- •54. Физические свойства жидкости
- •55. Поток жидкости и его параметры
- •56. Основные законы гидродинамики. Уравнение неразрывности потока и уравнение Бернулли
- •57. Истечение жидкости из малых отверстий и насадок
- •58. Требования, предъявляемые к карбюратору
- •59 . Элементарный карбюратор
- •60. Течение воздуха по впускному тракту
- •61. Истечение топлива из жиклера
- •62. Характеристики элементарного и идеального карбюраторов
- •63. Главная дозирующая система
- •64. Вспомогательные устройства
- •65. Классификация камер сгорания
- •66. Способы смесеобразования
- •67. Пленочный и объемно-пленочный способы смесеобразования
- •68. Сравнительная оценка различных способов смесеобразования
- •69. Распыление топлива
- •70. Образование горючей смеси и воспламенение топлива
- •71. Типы кшм
- •72. Кинематика центрального кшм
- •11.2.3. Ускорение поршня
- •73. Отношение хода поршня к диаметру цилиндра
- •75. Силы инерции
- •76. Суммарные силы, действующие в кшм
- •77. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров
- •78. Назначение кшм и принцип работы.
- •79. Состав и устройство узлов кшм.
- •80. Общие сведения о системе охлаждения двигателя
- •81. Жидкостное охлаждение двигателя
- •82. Воздушное охлаждение двигателя
- •83. Расчёт системы охлаждения двигателя
- •84. Общие сведения о системе смазки
- •85. Системы смазки
- •86. Состав системы смазки
- •87. Масляные насосы
- •88. Редукционные клапаны
- •89. Масляные фильтры
- •90. Масляные радиаторы
- •91 Вентиляция картера
- •92. Моторные масла и требования к ним
- •93.Назначение и принцип работы механизма газораспределения
- •94 Состав механизма газораспределения
- •95. Привод клапанов
- •96. Привод распределительных валов
16. Второй Закон Термодинамики, его физическая основа.
Первый закон термодинамики устанавливает количественное соотношение между различными видами энергии при их взаимном превращении. Однако он не дает ответа на вопрос о возможном направлении таких превращений и условиях, при которых преобразование энергии может быть реализовано.
В то же время было установлено, что не все процессы, связанные с передачей и преобразованием различных видов энергии, равновозможны. Так например, распространение тепловой энергии от горячих тел или участков системы к холодным протекает самопроизвольно, но обратные процессы в природе никогда не наблюдаются. Для того чтобы охладить тело до температуры ниже окружающей среды, необходимо затратить энергию.
Таким же необратимым является процесс расширения сжатого газа в вакуум. Известно, что газ, сконцентрированный в одной части какого-либо резервуара и изолированный в нем перегородкой, самопроизвольно распространяется по всему объему, если в этой перегородке проделать отверстие. Однако молекулы газа никогда без постороннего вмешательства не соберутся вновь в ограниченной части пространства.
Особое значение для практики имеет необратимость взаимного преобразования теплоты и механической работы.
Опыт показывает, что преобразование механической энергии в тепловую, всегда происходит полностью и самопроизвольно без каких-либо дополнительных условий или процессов.
Так, работа трения или удара целиком преобразуется в теплоту и нагревает систему, в которой эти процессы происходят. Подобным же образом в результате молекулярного трения повышается температура жидкости или газа из-за превращения кинетической энергии потока в теплоту. Однако обратное преобразование тепловой энергии, рассеянной в окружающей среде, в механическую работу самопроизвольно происходить не может.
Наблюдения характерных особенностей тепловой энергии привели к определению второго закона или второго начала термодинамики. Существует несколько эмпирических формулировок этого закона, каждая из которых описывает определенные внешние проявления рассмотренных особенностей теплоты и устанавливает, так или иначе, необратимость самопроизвольных термодинамических процессов.
Одна из таких формулировок утверждает, что теплота не может самопроизвольно перейти от более холодного тела к более теплому.
По другой формулировке самопроизвольный выход термодинамической системы из равновесного состояния практически невозможен.
Таким образом, можно утверждать следующее:
• теплота только тогда может быть преобразована в механическую работу, когда в термодинамической системе имеется перепад температур;
• совершаемая работа зависит от уровня этих температур;
• полный переход теплоты в работу невозможен.
17. Циклы теплового двигателя.
Принцип преобразования тепловой энергии в механическую работу состоит в использовании эффекта значительного объемного расширения газообразных рабочих тел при их нагревании.
Чтобы реализовать этот принцип необходимо иметь машину с рабочей полостью переменного объема, который должен быть заполнен рабочим телом. Один их вариантов такой машины — цилиндр с поршнем, перемещение которого позволяет изменять рабочий объем. При подводе теплоты к газу, последний расширяется и, оказывая силовое воздействие на поршень, перемещает его и производит внешнюю работу:
. (1.22)
Из выражения (1.22) видно, что работа будет производиться только при увеличении объема рабочего тела, и как только возможности его расширения будут исчерпаны, преобразование прекратится. Для возобновления полезного действия машины, рабочее тело надо вернуть в исходное состояние, т. е. переместить поршень, уменьшив объем рабочего тела.
Таким образом, для непрерывного получения механической работы необходимо осуществить круговой процесс, т. е. цикл.
Циклом называется совокупность процессов, происходящих в определенной последовательности, в результате осуществления которых рабочее тело возвращается в первоначальное состояние.
В реальных тепловых двигателях после осуществления каждого цикла происходит смена рабочего тела. Однако возможны и замкнутые циклы, совершаемые с одним и тем же рабочим телом путем изменения параметров его состояния. С точки зрения термодинамики эти две схемы совершенно эквивалентны.
При уменьшении объема рабочего тела будет происходить его сжатие с изменением параметров состояния. При этом, чем больше повышается давление и температура газа, тем выше поднимается кривая сжатия, и тем больше затраты работы на его осуществление. Возможны случаи, когда линия сжатия располагается выше или ниже линии расширения.
Очевидно, что при необходимости получения полезной работы имеют смысл только такие циклы, в которых работа сжатия lсж меньше работы расширения lp. Эти циклы называются прямыми (рис. 12, а). Они лежат в основе работы тепловых двигателей.
Полезная работа прямого цикла равна разности работ расширения lр и сжатия lсж.
.
В обратных циклах
.
Работа обратного цикла отрицательна и используется в холодильных машинах.
Таким образом, в непрерывно действующем тепловом двигателе необходимо периодическое повторение прямых циклов, в которых процесс сжатия должен характеризоваться минимальной затратой работы.
Для выполнения последнего условия требуется, чтобы сжатие происходило при наименьшем повышении текущих значений температуры и давления, что может быть достигнуто только в случае отвода теплоты в период возвращения рабочего тела в состояние минимального объема.
Если теплоту не отводить, то работа затраченная на сжатие будет, по крайней мере, равна работе расширения и эффективность такой машины окажется равна нулю.
Таким образом, в любом случае непременным условием преобразования тепловой энергии в механическую, является прямой или косвенный расход теплоты, подведенной в цикле на возвращение рабочего тела в состояние минимального объема. Основным показателем эффективности циклов тепловых двигателей является их термический или термодинамический коэффициент полезного действия (КПД) ηt.
Термодинамический КПД определяет степень преобразования тепловой энергии в механическую в прямом цикле. Он представляет собой отношение величины тепловой энергии, преобразованной в механическую работу Аl, ко всей подведенной теплоте q1:
. (1.23)
В соответствии с законом сохранения энергии [формула (1.4)]
,
где q2 — количество теплоты, отведенной холодильником.
Тогда
.
(1.24)
