- •1.Введение в биохимию. Строение и функции белков. Ферменты.
- •2.Объекты, задачи и методы статической и динамической биохимии.
- •3. Методы и достижения функциональной биохимии. Биохимия и медицина.
- •1) Решение проблем сохранения здоровья человека;
- •5.Аминокислотный состав белковых молекул.
- •6.Физико-химические свойства белков.
- •7.Методы обнаружения и количественного определения белков.
- •8.Уровни структурной организации белковых молекул.
- •9.Зависимость биологических функций от структуры белков.
- •10.Классификация белков по их биологическим функциям
- •11.Структура простых и сложных белков.
- •12. Механизм действия и особенности ферментативного катализа.
- •13.Зависимость скорости ферментативных реакций от температуры, рН, концентрации фермента и субстрата.
- •14.Кофакторы ферментов: ионы металлов и коферменты.
- •15.Коферментные функции витаминов.
- •16.Регуляция активности ферментов. Ингибиторы и активаторы ферментов.
- •17. Лекарственные препараты - ингибиторы и активаторы ферментов.
- •18.Классификация ферментов и их номенклатура.
- •19. Характеристика ферментов класса оксидоредуктаз
- •20 Характеристика ферментов класса трансфераз,
- •21. Характеристика ферментов класса гидролаз.
- •22. Характеристика ферментов класса изомераз.
- •23. Характеристика ферментов класса, лиаз
- •24. Характеристика ферментов класса лигаз.
- •25.Особенности ферментного состава органов и тканей.
- •27.Наследственные энзимопатии. Применение ферментов в медицине.
- •1.Нуклеотидный состав рнк и днк.
- •2.Днк, строение и функции. Биосинтез днк.
- •3.Типы рнк. Биосинтез рнк.
- •7.Незаменимые компоненты пищи. Незаменимые аминокислоты и незаменимые полиненасыщенные жирные кислоты.
- •8.Регионарные патологии, связанные с недостатком микроэлементов.
- •9.Витамины – механизм их биологических эффектов. Классификация витаминов.
- •10.Строение, пищевые источники и биологические функции витаминов: а, д,
- •11.Строение, пищевые источники и биологические функции витаминов: е. К.
- •12.Строение, пищевые источники и биологические функции витаминов: в1, в2,
- •13.Строение, пищевые источники и биологические функции витаминов, в6, в12,
- •14.Строение, пищевые источники и биологические функции витаминов: рр, с,
- •15.Строение, пищевые источники и биологические функции витаминов: биотин, пантотеновая кислота и фолевая кислота.
- •1.Понятие об обмене веществ и энергии. Второй закон термодинамики и обмен веществ
- •2.Анаболические и катаболические реакции метаболизма.
- •3.Специфические и общие пути катаболизма.
- •4Основные конечные продукты метаболизма у человека и пути их выведения.
- •5.Макроэргические соединения – строение и функции. Понятие о тканевом дыхании и биологическом окислении.
- •6.Дегидрирование субстратов и окисление водорода как источник энергии в клетке.
- •8.Структурная организация митохондриальной цепи переноса электронов и протонов.
- •7 Анаэробные дегидрогеназы и первичные акцепторы водорода – над и надф
- •8.Аэробные дегидрогеназы - фад и фмн-дегидрогеназы.
- •9.Терминальное окисление: убихинон, цитохромы. Цитохромоксидаза.
- •10.Механизмы трансформация энергии в клетке (теория п. Митчелла).
- •12.Механизм окислительного фосфорилирования, коэффициент р/0 и адф/о.
- •13.Разобщение тканевого дыхания и окислительного фосфорилирования.
- •15.Химизм окислительного декарбоксилирования пировиноградной кислоты.
- •16.Химизм и биологическая роль цикла трикарбоновых кислот.
- •17 Биоэнергетика и регуляция общих путей катаболизма.
- •4.Обмен углеводов
- •1. Основные углеводы пищи и тканей человека.
- •7.Химизм анаэробного пути распада углеводов.
- •8.Распространение и биол. Роль анаэробного гликолиза.
- •9. Анаэробный гликолиз и глюконеогенез (цикл Кори).
- •10.Химизм глюконеогенеза.
- •11.Химизм использования лактата сердечной мышцей.
- •12.Регуляция и нарушения гликолиза (эффект Пастера).
- •13. Биологическая роль пентозофосфатного пути катаболизма глюкозы.
- •14.Химизм пентозофосфатного пути распада глюкозы.
- •15.Биосинтез гликогена. Биологическая роль этого процесса.
- •16.Механизм мобилизации гликогена. Биологическая роль этого процесса.
- •17.Механизмы регуляции уровня глюкозы в крови.
- •18.Особенности обмена фруктозы, галактозы и дисахаридов.
- •19.Наследственные нарушения обмена моносахаридов и дисахаридов
- •20.Структура и биологическая роль мукополисахаридов
- •21.Состав и функции протеогликанов и гликопротеинов.
- •5. Обмен липидов
- •1. Состав важнейших липидов тканей. Жирные кислоты липидов тканей человека.
- •2.Структура и функции фосфолипидов тканей человека.
- •3.Структура и функции гликолипидов тканей человека.
- •4.Состав и биологические функции транспортных липидов.
- •5. Резервные и структурные липиды.
- •6.Переваривание жиров и всасывание продуктов переваривания липидов.
- •7.Желчные кислоты строение функции.
- •8.Нарушение переваривания и всасывания липидов.
- •9. Ресинтез триацилглицеринов в стенке кишечника.
- •10.Бета-окисление как специфический путь катаболизма жирных кислот.
- •11.Карнитиновый челночный механизм транспорта жирных кислот в митохондрии.
- •12.Особенности метаболизма полиненасыщенных жирных кислот.
- •13.Особенности метаболизма трансизомеров жирных кислот.
- •14. Биосинтез жирных кислот.
- •15.Особенности биосинтеза жиров в печени.
- •16.Особенности биосинтеза жиров в жировой ткани.
- •17.Механизм резервирование и мобилизация жиров.
- •18.Нарушения метаболизма жиров при анорексии и ожирении.
- •19.Синтез, использование и физиологическое значение кетоновых тел.
- •20.Схема синтеза основных простагландинов и их физиологические функции.
- •21.Стероиды организма человека и их биологические функции.
- •22.Биосинтез холестерина, регуляция и нарушения этого процесса.
- •23.Гиперлипопротеинемии - причины и последствия.
- •24.Механизм развития и биохимические основы лечения желчнокаменной болезни.
- •25.Биосинтез фосфолипидов.
- •6.Обмен белков и аминокислот.
- •1.Общая схема источников и путей расходования аминокислот в тканях.
- •3.Гниение белков (аминокислот) в кишечнике.
- •4. Обезвреживание продуктов гниения аминокислот.
- •11.Нарушения обмена биогенных аминов при психических заболеваниях.
- •12.Метаболиз аммиака. Основные источники аммиака и пути его обезвреживания.
- •13.Конечные продукты азотистого обмена: соли аммония и мочевина.
- •14.Биосинтез мочевины. Нарушение синтеза и выведения мочевины.
- •15.Специфические пути обмена аминокислот
- •16.Особенности обмена серосодержащих и ароматических аминокислот.
- •17.Синтез креатина и его биологическая роль.
- •18.Нарушения обмена отдельных аминокислот.
- •19. Переваривание и всасывание продуктов переваривания нуклеопротеидов.
- •20.Биосинтез пуриновых нуклеотидов
- •23.Биосинтез пиримидиновых нуклеотидов.
- •24.Нарушения обмена нуклеотидов. Подагра. Подагра
- •7. Регуляция обмена веществ. Гормоны. Водно-солевой обмен.
- •1.Основные механизмы саморегуляции обмена веществ на уровне клетки.
- •2.Современные представления о механизме действия гормонов
- •3.Классификация гормонов. Либерины и статины гипоталамуса. Биологическое действие.
- •4. Актг, стг - химическая природа биологическое действие.
- •5. Гормоны нейрогипофиза- химическая природа биологическое действие.
- •6.Механизм действия гонадотропных гормонов гипофиза.
- •7.Иодтиронины щитовидной железы, строение, влияние на обмен веществ и биоэнергетику клетки.
- •8.Гормоны мозгового вещества надпочечников, химическая природа, биосинтез, влияние на обмен веществ и биоэнергетические процессы.
- •9.Инсулин, химическая природа и механизм действия в регуляции обменных процессов.
- •10.Глюкагон, химическая природа и механизм действия в регуляции обменных процессов.
- •11.Основные биохимические нарушения при сахарном диабете
- •12.Минералокортикоиды - химическая природа, представители, механизм действия на обмен веществ.
- •13.Глюкокортикоиды - химическая природа, представители, механизм действия на обмен веществ.
- •14.Химическая природа, представители и функции эстрогенов.
- •15.Химическая природа, представители и функции андрогенов.
- •16.Химическая природа и функции гестагенов.
- •17.Регуляция эстрогенами и прогестинами менструального цикла.
- •18.Гормоны и адаптационные процессы.
- •19. Биологические функции натрия, калий и других электролитов.
- •20.Роль почек в регуляции водно-солевого обмена.
- •21.Физико-химические свойства и химический состав мочи.
- •22. Патологические компоненты мочи, их обнаружение, значение для диагностики.
- •23. Биологическая роль кальция и фосфора. Нарушения фосфорно-кальциевый обмена
- •24.Регуляция фосфорно-кальциевого обмена паратгормоном и тиреокальцитонином.
- •8.Биохимия печени и метаболизм хромопротеидов. Биохимия крови, соединительной ткани, мышц, костной ткани, зуба и нервной ткани.
- •1.Биологические функции печени. Роль печени в обмене веществ.
- •2.Механизмы детоксикация чужеродных и лекарственных соединений в печени.
- •3.Синтез гема гемоглобина. Нарушения синтеза гема. Порфирии
- •4.Катаболизм гемоглобина. Диагностическое значение определения желчных пигментов, пигментов кала и мочи.
- •5.Химический состав плазмы крови. Белки плазмы крови и их функции.
- •6.Остаточный азот крови и метаболиты аминокислотного и белкового обменов в диагностике нарушений метаболизма.
- •7.Токсичные формы кислорода, их образование и воздействие на клетки. Ферменты системы антиоксидантной защиты
- •8.Механизм участия витамина к в гемогоагуляции
- •9.Особенности химического состава соединительной ткани.
- •10.Гликозаминогликаны и протеогликаны соединительной ткани.
- •11.Биосинтез коллагена. Коллагенозы. Проявления недостаточности витамина с.
- •12.Особенности биохимического состава эмали, дентина и пульпы.
- •13.Физико-химические свойства, химический состав, биологическая роль слюны и гингивальной жидкости
- •14.Особенности химического состава мышц. Атф-регенерирующая система мышц.
- •15. Биохимические механизмы процесса мышечного сокращения и расслабления.
- •16.Физиологически активные пептиды и медиаторы мозга.
- •17. Биохимия ацетилхолинового рецептора
- •18. Биохимия адренергического рецептора
16.Особенности обмена серосодержащих и ароматических аминокислот.
В молекулах белка обнаружены три серосодержащие аминокислоты (ме-тионин, цистеин и цистин), метаболически тесно связанные друг с другом. Благодаря наличию в составе цистеина высокореактивной SH-группы в тканях легко осуществляется ферментативная окислительно-восстановительная реакция между цистеином и цистином.
Дисульфидная связь часто образуется между двумя остатками цистеина внутри одной полипептидной цепи или между двумя полипептидными цепями, способствуя тем самым стабилизации молекулы белка. Цистеин является составной частью трипептида глутатиона, сокращенно обозначаемого Г—SH, что подчеркивает функциональную значимость его тио-группы и возможность образования дисульфидной связи окисленного глу-татиона (Г—S—S—Г). Известно, что многие ферменты содержат в активном центре SH-груп-пы, абсолютно необходимые для каталитической реакции. При их окислении ферменты теряют свою активность. Предполагают, что одной из главных функций глутатиона является сохранение этих ферментов в активной восстановленной форме. Окисленный глутатион может восстанавливаться под действием глутатионредуктазы, используя НАДФН. Кроме того, глутатион может оказывать ингибирующее действие на некоторые белки. В частности, известная реакция инактивации инсулина под действием глутатионинсулинтрансгидрогеназы, в которой SH-глутатион является донором водородных атомов, разрывающих дисульфидные связи между двумя полипептидными цепями молекулы инсулина. Установлена также коферментная функция глутатиона, в частности для глиоксилазы I. Ранее обсуждалось участие глутатиона в транспорте аминокислот через клеточную мембрану. В процессе катаболизма сера метионина в тканях в основном переходит в серу цистеина, а взаимопревращение цистина в цистеин осуществляется легко. Поэтому проблема окисления серы всех аминокислот практически сводится к окислению цистеина. Главным путем оказался окислительный, включающий окисление цистеина в цистеинсульфиновую кислоту, транс-аминирование последней с α-кетоглутаратом и образование пирувата и сульфита по схеме:
Сульфит затем быстро окисляется в тканях и выводится с мочой в виде нетоксичных сульфатов и эфиросерных кислот. Использование цистеина и продуктов его окисления – цистеинсульфиновой и цистеиновой кислот – в образовании таурина рассмотрено ранее. Метаболические пути превращения метионина в тканях значительно разнообразнее, чем пути превращения других серосодержащих аминокислот; тем не менее катаболизм метионина осуществляется через цистеин. Это превращение метионина в цистеин оказалось необратимым процессом. Выяснилось также, что углеродный скелет цистеина происходит из другой аминокислоты, а именно серина. Фактическим донором метильных групп в реакциях трансметилирования является не свободный метионин, а так называемый активный метионин – S-аденозилметионин, который образуется в процессе АТФ-зависимой реакции, катализируемой метионин-аденозилтрансферазой.
Своеобразие
данной реакции заключается в том, что
СН3-группа ме-тионина активируется под
действием положительного заряда
соседнего атома серы. S-аденозилметионин
участвует во всех реакциях, где метильная
группа используется в биосинтетических
реакциях: например, в синтезе адреналина,
креатинина, тимина, фосфатидилхолина,
бетаина и др. Образовавшийся после
отщепления метильной группы
S-аденозилгомоцистеин подвергается
гидролизу на аденозин и гомоцистеин;
последний используется в синтезе серина
(это основной путь превращения) или
служит акцептором метильной группы от
N5—СН3—ТГФК в синтезе метионина (эту
реакцию катализирует
гомоцистеинметилтрансфераза), завершая,
таким образом, своеобразный цикл
активирования метильной группы.
В качестве примера приводим схему биосинтеза креатина, в котором принимают участие три аминокислоты: аргинин, глицин и метионин. Реакция синтеза протекает в две стадии. Первая стадия – биосинтез гуанидинацетата – осуществляется в почках при участии глицин-амидинотранс-феразы (КФ 2.1.4.1): Вторая стадия синтеза креатина протекает в печени при участии гуанидинацетатметилтрансферазы (КФ 2.1.1.2): Креатин подвергается фосфорилированию с образованием креатин-фосфата, который после дефосфорилирования (необратимая реакция) превращается в креатинин, выделяющийся с мочой. Гомоцистеин может вновь превращаться в метионин путем метилирования. Однако основной путь дальнейшего превращения гомоцистеина связан с его использованием в синтезе цистеина, который может быть представлен в виде двух последовательных ферментативных реакций. Ферменты, катализирующие синтез и распад цистатионина (циста-тионин-β-синтаза и цистатионаза), содержат ПФ. Цистеин далее подвергается окислению по описанному ранее пути, а гомосерин после транс-аминирования с α-кетоглутаратом превращается в α-кетомасляную кислоту; последняя может также образоваться из цистатионина непосредственно, минуя стадию гомосерина.
