- •1.Введение в биохимию. Строение и функции белков. Ферменты.
- •2.Объекты, задачи и методы статической и динамической биохимии.
- •3. Методы и достижения функциональной биохимии. Биохимия и медицина.
- •1) Решение проблем сохранения здоровья человека;
- •5.Аминокислотный состав белковых молекул.
- •6.Физико-химические свойства белков.
- •7.Методы обнаружения и количественного определения белков.
- •8.Уровни структурной организации белковых молекул.
- •9.Зависимость биологических функций от структуры белков.
- •10.Классификация белков по их биологическим функциям
- •11.Структура простых и сложных белков.
- •12. Механизм действия и особенности ферментативного катализа.
- •13.Зависимость скорости ферментативных реакций от температуры, рН, концентрации фермента и субстрата.
- •14.Кофакторы ферментов: ионы металлов и коферменты.
- •15.Коферментные функции витаминов.
- •16.Регуляция активности ферментов. Ингибиторы и активаторы ферментов.
- •17. Лекарственные препараты - ингибиторы и активаторы ферментов.
- •18.Классификация ферментов и их номенклатура.
- •19. Характеристика ферментов класса оксидоредуктаз
- •20 Характеристика ферментов класса трансфераз,
- •21. Характеристика ферментов класса гидролаз.
- •22. Характеристика ферментов класса изомераз.
- •23. Характеристика ферментов класса, лиаз
- •24. Характеристика ферментов класса лигаз.
- •25.Особенности ферментного состава органов и тканей.
- •27.Наследственные энзимопатии. Применение ферментов в медицине.
- •1.Нуклеотидный состав рнк и днк.
- •2.Днк, строение и функции. Биосинтез днк.
- •3.Типы рнк. Биосинтез рнк.
- •7.Незаменимые компоненты пищи. Незаменимые аминокислоты и незаменимые полиненасыщенные жирные кислоты.
- •8.Регионарные патологии, связанные с недостатком микроэлементов.
- •9.Витамины – механизм их биологических эффектов. Классификация витаминов.
- •10.Строение, пищевые источники и биологические функции витаминов: а, д,
- •11.Строение, пищевые источники и биологические функции витаминов: е. К.
- •12.Строение, пищевые источники и биологические функции витаминов: в1, в2,
- •13.Строение, пищевые источники и биологические функции витаминов, в6, в12,
- •14.Строение, пищевые источники и биологические функции витаминов: рр, с,
- •15.Строение, пищевые источники и биологические функции витаминов: биотин, пантотеновая кислота и фолевая кислота.
- •1.Понятие об обмене веществ и энергии. Второй закон термодинамики и обмен веществ
- •2.Анаболические и катаболические реакции метаболизма.
- •3.Специфические и общие пути катаболизма.
- •4Основные конечные продукты метаболизма у человека и пути их выведения.
- •5.Макроэргические соединения – строение и функции. Понятие о тканевом дыхании и биологическом окислении.
- •6.Дегидрирование субстратов и окисление водорода как источник энергии в клетке.
- •8.Структурная организация митохондриальной цепи переноса электронов и протонов.
- •7 Анаэробные дегидрогеназы и первичные акцепторы водорода – над и надф
- •8.Аэробные дегидрогеназы - фад и фмн-дегидрогеназы.
- •9.Терминальное окисление: убихинон, цитохромы. Цитохромоксидаза.
- •10.Механизмы трансформация энергии в клетке (теория п. Митчелла).
- •12.Механизм окислительного фосфорилирования, коэффициент р/0 и адф/о.
- •13.Разобщение тканевого дыхания и окислительного фосфорилирования.
- •15.Химизм окислительного декарбоксилирования пировиноградной кислоты.
- •16.Химизм и биологическая роль цикла трикарбоновых кислот.
- •17 Биоэнергетика и регуляция общих путей катаболизма.
- •4.Обмен углеводов
- •1. Основные углеводы пищи и тканей человека.
- •7.Химизм анаэробного пути распада углеводов.
- •8.Распространение и биол. Роль анаэробного гликолиза.
- •9. Анаэробный гликолиз и глюконеогенез (цикл Кори).
- •10.Химизм глюконеогенеза.
- •11.Химизм использования лактата сердечной мышцей.
- •12.Регуляция и нарушения гликолиза (эффект Пастера).
- •13. Биологическая роль пентозофосфатного пути катаболизма глюкозы.
- •14.Химизм пентозофосфатного пути распада глюкозы.
- •15.Биосинтез гликогена. Биологическая роль этого процесса.
- •16.Механизм мобилизации гликогена. Биологическая роль этого процесса.
- •17.Механизмы регуляции уровня глюкозы в крови.
- •18.Особенности обмена фруктозы, галактозы и дисахаридов.
- •19.Наследственные нарушения обмена моносахаридов и дисахаридов
- •20.Структура и биологическая роль мукополисахаридов
- •21.Состав и функции протеогликанов и гликопротеинов.
- •5. Обмен липидов
- •1. Состав важнейших липидов тканей. Жирные кислоты липидов тканей человека.
- •2.Структура и функции фосфолипидов тканей человека.
- •3.Структура и функции гликолипидов тканей человека.
- •4.Состав и биологические функции транспортных липидов.
- •5. Резервные и структурные липиды.
- •6.Переваривание жиров и всасывание продуктов переваривания липидов.
- •7.Желчные кислоты строение функции.
- •8.Нарушение переваривания и всасывания липидов.
- •9. Ресинтез триацилглицеринов в стенке кишечника.
- •10.Бета-окисление как специфический путь катаболизма жирных кислот.
- •11.Карнитиновый челночный механизм транспорта жирных кислот в митохондрии.
- •12.Особенности метаболизма полиненасыщенных жирных кислот.
- •13.Особенности метаболизма трансизомеров жирных кислот.
- •14. Биосинтез жирных кислот.
- •15.Особенности биосинтеза жиров в печени.
- •16.Особенности биосинтеза жиров в жировой ткани.
- •17.Механизм резервирование и мобилизация жиров.
- •18.Нарушения метаболизма жиров при анорексии и ожирении.
- •19.Синтез, использование и физиологическое значение кетоновых тел.
- •20.Схема синтеза основных простагландинов и их физиологические функции.
- •21.Стероиды организма человека и их биологические функции.
- •22.Биосинтез холестерина, регуляция и нарушения этого процесса.
- •23.Гиперлипопротеинемии - причины и последствия.
- •24.Механизм развития и биохимические основы лечения желчнокаменной болезни.
- •25.Биосинтез фосфолипидов.
- •6.Обмен белков и аминокислот.
- •1.Общая схема источников и путей расходования аминокислот в тканях.
- •3.Гниение белков (аминокислот) в кишечнике.
- •4. Обезвреживание продуктов гниения аминокислот.
- •11.Нарушения обмена биогенных аминов при психических заболеваниях.
- •12.Метаболиз аммиака. Основные источники аммиака и пути его обезвреживания.
- •13.Конечные продукты азотистого обмена: соли аммония и мочевина.
- •14.Биосинтез мочевины. Нарушение синтеза и выведения мочевины.
- •15.Специфические пути обмена аминокислот
- •16.Особенности обмена серосодержащих и ароматических аминокислот.
- •17.Синтез креатина и его биологическая роль.
- •18.Нарушения обмена отдельных аминокислот.
- •19. Переваривание и всасывание продуктов переваривания нуклеопротеидов.
- •20.Биосинтез пуриновых нуклеотидов
- •23.Биосинтез пиримидиновых нуклеотидов.
- •24.Нарушения обмена нуклеотидов. Подагра. Подагра
- •7. Регуляция обмена веществ. Гормоны. Водно-солевой обмен.
- •1.Основные механизмы саморегуляции обмена веществ на уровне клетки.
- •2.Современные представления о механизме действия гормонов
- •3.Классификация гормонов. Либерины и статины гипоталамуса. Биологическое действие.
- •4. Актг, стг - химическая природа биологическое действие.
- •5. Гормоны нейрогипофиза- химическая природа биологическое действие.
- •6.Механизм действия гонадотропных гормонов гипофиза.
- •7.Иодтиронины щитовидной железы, строение, влияние на обмен веществ и биоэнергетику клетки.
- •8.Гормоны мозгового вещества надпочечников, химическая природа, биосинтез, влияние на обмен веществ и биоэнергетические процессы.
- •9.Инсулин, химическая природа и механизм действия в регуляции обменных процессов.
- •10.Глюкагон, химическая природа и механизм действия в регуляции обменных процессов.
- •11.Основные биохимические нарушения при сахарном диабете
- •12.Минералокортикоиды - химическая природа, представители, механизм действия на обмен веществ.
- •13.Глюкокортикоиды - химическая природа, представители, механизм действия на обмен веществ.
- •14.Химическая природа, представители и функции эстрогенов.
- •15.Химическая природа, представители и функции андрогенов.
- •16.Химическая природа и функции гестагенов.
- •17.Регуляция эстрогенами и прогестинами менструального цикла.
- •18.Гормоны и адаптационные процессы.
- •19. Биологические функции натрия, калий и других электролитов.
- •20.Роль почек в регуляции водно-солевого обмена.
- •21.Физико-химические свойства и химический состав мочи.
- •22. Патологические компоненты мочи, их обнаружение, значение для диагностики.
- •23. Биологическая роль кальция и фосфора. Нарушения фосфорно-кальциевый обмена
- •24.Регуляция фосфорно-кальциевого обмена паратгормоном и тиреокальцитонином.
- •8.Биохимия печени и метаболизм хромопротеидов. Биохимия крови, соединительной ткани, мышц, костной ткани, зуба и нервной ткани.
- •1.Биологические функции печени. Роль печени в обмене веществ.
- •2.Механизмы детоксикация чужеродных и лекарственных соединений в печени.
- •3.Синтез гема гемоглобина. Нарушения синтеза гема. Порфирии
- •4.Катаболизм гемоглобина. Диагностическое значение определения желчных пигментов, пигментов кала и мочи.
- •5.Химический состав плазмы крови. Белки плазмы крови и их функции.
- •6.Остаточный азот крови и метаболиты аминокислотного и белкового обменов в диагностике нарушений метаболизма.
- •7.Токсичные формы кислорода, их образование и воздействие на клетки. Ферменты системы антиоксидантной защиты
- •8.Механизм участия витамина к в гемогоагуляции
- •9.Особенности химического состава соединительной ткани.
- •10.Гликозаминогликаны и протеогликаны соединительной ткани.
- •11.Биосинтез коллагена. Коллагенозы. Проявления недостаточности витамина с.
- •12.Особенности биохимического состава эмали, дентина и пульпы.
- •13.Физико-химические свойства, химический состав, биологическая роль слюны и гингивальной жидкости
- •14.Особенности химического состава мышц. Атф-регенерирующая система мышц.
- •15. Биохимические механизмы процесса мышечного сокращения и расслабления.
- •16.Физиологически активные пептиды и медиаторы мозга.
- •17. Биохимия ацетилхолинового рецептора
- •18. Биохимия адренергического рецептора
16.Механизм мобилизации гликогена. Биологическая роль этого процесса.
Мобилизация гликогена начинается с возникновением готовности и необходимости организма выполнять мышечную работу, или струссовойситуации. При этом из мозгового вещества надпочечников в кровь секретируетя гормон адреналин, котороый, взаимодействуя с рецепторами мембран миоцитов, активирует фермент аденилатциклазу. Аденилатциклаза используя АТФ, синтезирует множество молекул цАМФ, что является фактором усиления нейрогеморального сигнала на клетку и ткань в целом.Далее молекулы цАТФ активирует цАМФ-зависимые протеинкиназы, которые активируют фосфорилазкиназу. Фосфорилазкиназа активирует фосфорилазу «b», переводя ее в фосфорилазу «а». Далее идет фосфоролиз гликогена, т.е. Его мобилизация. В целом мобилизация гликогена — это конечное звено каскада реакций запускаемые появлением в клетке 3'5'-АМФ(цАМФ).
17.Механизмы регуляции уровня глюкозы в крови.
Известно, что уровень глюкозы в крови колеблется от 3,33 ммоль/л до 5,55 ммоль/л и регулируется с помощью гормонов инсулина, понижающего этот уровень до нормы и глюкагона, повышающего его до нормы. Увеличение уровня глюкозы в крови после приема пищи (пищевая или алиментарная гипергликемия) повышает, следовательно, и содержание инсулина в крови.
Инсулин - анаболический гормон; он воздействует на мембраны клеток, увеличивая их проницаемость для глюкозы, следовательно, увеличивая и питание клеток. В случаях избыточного веса (ожирение), такой процесс можно контролировать, используя продукты с низким и средним гликемическим индексом, и, наоборот, при интенсивных физических нагрузках - с высоким гликемическим индексом.
Попавшие из кишечника в кровь моносахариды переносятся ею в печень. Печень может регулировать содержание глюкозы в крови. Избыток глюкозы превращается в ней в гликоген и откладывается в запас, остальная глюкоза поступает в большой круг кровообращения и постепенно используется клетками различных органов. При повышении потребности организма в глюкозе гликоген печени может расщепляться и повышать уровень ее в крови.
Если поступление глюкозы в печень превышает возможности ее превращения в гликоген, то в большом круге кровообращения ее содержание оказывается выше нормы (5,55 ммоль/л). Такое состояние называется гипергликемией. Она стимулирует синтез гликогена не только в печени, но и в мышцах, а также превращение глюкозы в жиры и холестерин.
В состоянии покоя наибольшее количество глюкозы потребляется головным мозгом, при физической работе - мышцами.
В клетках различных органов в зависимости от их функционального состояния глюкоза либо сразу включается в реакции распада, обеспечивающие клетку энергией, либо участвует в пластическом обмене, в ходе которого из нее может синтезироваться не только гликоген, но и более сложные вещества - нуклеиновые кислоты, гликолипиды, гетерополисахариды и т.д.
18.Особенности обмена фруктозы, галактозы и дисахаридов.
Превращение галактозы в глюкозу может иным путем при участии фермента катализирующего синтез УДФ-галактозы непосредственно из галактозо-1-фосфата и УТФ (синтетаза УДФ-галактозы). Далее эпимераза превращает УДФ-галактозу в УДФ-глюкозу, которая разрушается на УМФ и глюкозо-1-фосфат: пирофосфат
УТФ
Глюкозо-1-фосфат УДФ-галактоза
УДФ-глюкоза УМФ+глюкозо -1- фосфат
Этот путь метаболизма галактозы мало активен у новорожденных, но с возрастом, в связи с накоплением синтетазы УДФ-галактозы, он приобретает существенное значение, определяя нарастание резистентности к галактозе у больных галактоземией.
Галактоза может метаболизироваться в фукозу (6-дезоксигалактоза), структурного компонента олигосахаридного фрагмента антигенов эритроцитов.
Галактоза необходима для образования цереброзидов, протеогликанов и гликопротеинов. В кишечнике и печени галактоза превращается в глюкозу.
Галактоза легко синтезируется из глюкозы. В крови уровень галактозы очень низок (0,1- 0.28 ммоль/л).
Повышение уровня галактозы в сыворотке крови наблюдается у недоношенных детей, в поздние сроки беременности, в период лактации.
При наследственно обусловленных дефектах генов транскрибирующих ферменты превращения галактозы в глюкозу, развивается галактоземия.
Галактоземия сопровождается галактозурией и аминоацидурией. Аминоцидурия возникает вследствие ингибирующего действия галактозо-1-фосфата на активный транспорт аминокислот.
Как следствие, при галатоземии повреждаются почки, возможна жировая инфильтрация печени, цирроз, катаракта, развивается слабоумие и др.
Изомер глюкозы фруктоза (левулоза) в крови присутствует в очень низких количествах (55.5-333,0 мкмоль/л).
При врожденной аномалии, вызванной недостатком фруктокиназы уровень фруктозы в крови повышается и она появляется в моче (идиопатическая фруктозурия).
Основной углевод молока лактоза образуется путем переноса галактозильного остатка от УДФ-галактозы непосредственно на глюкозу под воздействием трансферазы легко модифицируемого лактальбумином молока фермента.
Разрушение лактозы осуществляется лактазой, фермент, отсутствие которого приводит к непереностимости лактозы.
