Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12644 ЗМУ КР Математич статистика_психологи.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
812.03 Кб
Скачать

2. Теоремы сложения и умножения вероятностей

Для вычисления вероятностей событий применяются косвенные методы, которые предполагают знание основных теорем теории вероятностей: теоремы сложения вероятностей и теоремы умножения вероятностей.

Определение: Суммой двух событий А и В называется событие, состоящее в появлении хотя бы одного из событий А и В; будем ее обозначать А+В.

Определение: Произведением двух событий А и В называется событие, состоящее в совместном появлении этих событий; будем обозначать его АВ.

Теорема сложения вероятностей несовместных событий: Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий:

Р(А+В)=Р(А)+Р(В) (3)

Теорема сложения вероятностей совместных событий. Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Р(А+В)=Р(А)+Р(В)-Р(АВ) (4)

Теорема умножения вероятностей. Вероятность произведения двух событий ровна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

Р(АВ)=Р(А)Р(В/А) или Р(АВ)=Р(В)Р(А/В) (5)

Следствие 1 Р(А)+Р(Ẵ)=1 , (6)

А и Ẵ – противоположные события.

Следствие 2 Р(АВ)=Р(А)Р(В) (7)

А и В – независимые события.

Задача 3. Завод в среднем дает 27% продукции высшего качества и 70% первого сорта. Найти вероятность того, что наудачу взятое изделие будет или высшего качества или первого сорта.

Решение: Обозначим интересующее нас событие буквой С – наудачу взятое изделие будет высшего качества или первого сорта. Рассмотрим вспомогательные события, вероятности которых заданы в условии задачи. Пусть событие А – взятое изделие высшего качества, тогда Р(А)=0,27; событие В – взятое изделие первого сорта, тогда Р(В)=0,7. Событие С=А+В, причем А и В – несовместные события. Вероятность события С можно подсчитать по формуле (3) сложения вероятностей двух несовместных событий Р(С)=Р(А+В)=Р(А)+Р(В). Итак, Р(С)=0,27+0,7=0,97.

Задача 4. Рабочий обслуживает два станка, работающих независимо друг от друга. Вероятность того, что в течение часа станок не потребует внимания рабочего, равна для первого станка 0,8, а для второго 0,7. Вычислить вероятность того, что хотя бы один из двух станков не потребует внимания рабочего в течении часа.

Решение: Обозначаем интересующее нас событие, состоящее в том, что хотя бы один из станков не потребует внимания рабочего в течение часа, буквой С . Событие С означает, что либо первый станок не потребует внимания рабочего (событие А), либо второй станок не потребует внимания рабочего (событие В), возможно, что оба станка одновременно не потребуют внимания рабочего. Следовательно, событие С=А+В, причем А и В – совместные события. Для определения вероятности события С используем формулу (4) сложения вероятностей двух совместных событий: Р(С)=Р(А+В)=Р(А)+Р(В) –Р(АВ). По условию Р(А)=0,8, Р(В)=0,7. Событие А и В – независимые, поэтому Р(АВ)=Р(А)Р(В) – формула вероятности произведения двух независимых событий. Таким образом, Р(С)=0,8+0,7-0,8•0,7=0,94.

Задача 5. Студент пришел на экзамен, зная лишь 20 вопросов из 25 вопросов программы. Экзаменатор задал студенту наугад 2 вопроса. Найти вероятность того, что студент знает оба вопроса.

Решение: Введем обозначения событий: А – студент знает первый вопрос;

В – студент знает второй вопрос. Вероятность того, что студент знает первый вопрос можно подсчитать используя формулу (1) классического определения вероятности события, в которой п = 25 – общее число вопросов, m=20 - число вопросов, ответы на которые студент знает. Р (А) = По той же формуле (1) можно подсчитать условную вероятность того, что студент знает ответ на второй вопрос при условии, что он ответил правильно на первый вопрос. Но n = 24, так как студент ответил на первый вопрос и он не присутствует среди предложенных; m = 19, так как на один, известный студенту вопрос, он представил правильный ответ.

P( B/A) = . Вероятность же интересующего нас события подсчитаем по формуле (5): Р(А·В) = P(A)·P(A/B). Итак, Р (АВ) = .

Задача 6. В некоторой отрасли 25% продукции производится предприятием I, 30% продукции – предприятием II, а остальная часть продукции – предприятием III. На предприятии I в брак идет 1% продукции, на предприятии II – 2% продукции, а на предприятии III – 1,5%. Найти вероятность того, что купленная единица продукции оказалась браком. Какова вероятность того, что она произведена предприятием I?

Решение: Обозначим событие: А – купленная единица продукции оказалась браком. Рассмотрим гипотезы: Н1 – изделие произведено предприятием I; Н2 – изделие произведено предприятием II, Н3 – изделие произведено предприятием III. Тогда вероятность Р (Н1) = 0,25; Р (Н2) = 0,30; Р (Н3) = 1- (0,25 + 0,30) = 0,45. Последняя вероятность подсчитана из условия: Р (Н1)+ Р (Н2)+ Р (Н3) = =1, так как Н1, Н2 , Н3 образуют полную группу несовместных событий.

Условные вероятности события А при этих гипотезах соответственно равны: Р (А/Н1) = 0,01; Р (А/Н2) = 0,02; Р (А/Н3) = 0,015. Используем формулу полной вероятности: Р (А) = Р (Н1) Р (А/Н1) + Р (Н2) Р (А/Н2)+ Р (Н3) Р (А/Н3), тогда Р(А)= 0,25·0,01 + 0,30·0,02 + 0,45·0,015 = 0,01525 0,015.

Вероятность того, что купленная единица произведена предприятием I, найдем по формуле Байеса:

Р (Н1/A) = , тогда Р (Н1/A)=

Таким образом, из всех бракованных изделий отрасли в среднем 16% выпускается предприятием I.