- •Титульный лист Аннотация
- •Содержание
- •Введение
- •1 Описание современного состояния системы троллейбусных пассажирских перевозок
- •Показатели качества троллейбусных перевозок
- •1.2 Подвижной состав троллейбусов
- •1.3 Система питания тяговых сетей
- •1.4 Контактная сеть
- •1.5 Разворотные пункты
- •1.6 Преимущества троллейбусной системы
- •1.7 Недостатки троллейбусной системы
- •1.8 Попытки устранения недостатков троллейбусной системы
- •2 Состояние вопроса в области беспроводной энергетики
- •2.1 Трансформатор Николы Тесла
- •2.2 Космические электростанции
- •2.3 Передача энергии с помощью лазерных технологий
- •2.4 Ректенна
- •2.5 Технология Аскарьяна
- •2.6 Индукционная зарядка
- •2.7 Беспроводная технология «WiTricity»
- •2.8 Беспроводная технология «PowerBeam»
- •3 Разработка мероприятий по повышению качества троллейбусных пассажирских перевозок
- •3.1 Устройство системы беспроводной передачи электрической энергии
- •3.2 Показатели качества троллейбусных пассажирских перевозок с использованием ттээ
- •3.3 Преимущества системы беспроводной передачи электрической энергии
- •3.4 Перспективы развития беспроводной передачи электрической энергии
- •4 Расчет затрат на проведение исследований и разработки
- •4.1 Амортизация оборудования, относящегося к основным фондам
- •4.2 Отчисления на социальные нужды
- •4.3 Расчет затрат на материалы
- •4.4 Капитальные вложения на приобретение или изготовление специального оборудования и приборов
- •4.5 Расчет затрат на энергоресурсы
- •4.6 Расчет затрат на использование помещений
- •4.7 Накладные расходы
- •4.8 Сметная стоимость проведения нир
- •4.9 Определение цены нир
- •5 Безопасность труда
- •5.1 Анализ и обеспечение безопасных условий труда
- •5.2 Расчет искусственного освещения лаборатории по методу светового потока
- •5.3 Возможные чрезвычайные ситуации
- •6 Анализ экологического воздействия
- •6.1 Классификация загрязнений. Физические загрязнения
- •6.2 Экологическое воздействие ттээ на окружающую среду
- •Заключение
- •Список использованных источников
1.3 Система питания тяговых сетей
Городской электротранспорт работает на постоянном токе напряжением 600 В для трамваев и троллейбусов и 825 В для метрополитена, т.к. тяговые двигатели допускают частое изменение режима работы, обладают высоким КПД и имеют небольшую массу [4].
Выбор величины напряжение для передачи электрической энергии – один из наиболее важных и принципиальных вопросов, оказывающих влияние на технические и экономические показатели, капиталовложения и эксплуатационные расходы электрохозяйства городского электротранспорта. Например, при постройке метрополитена в Москве было принято напряжение 750 В. Повышение напряжения до 825 В дало значительную экономию цветных металлов, привело к сокращению числа тяговых подстанций и увеличению мощности существующих ртутных выпрямителей на 20-25 %.
Источником электроснабжения городского электротранспорта является общая энергосистема города, входящая в районную энергетическую систему. Производство электроэнергии в современных энергосистемах сосредотачивается на мощных электрических станциях – тепловых и гидроэлектрических. Источники энергии, как правило, удалены от потребителей [7].
Электрические станции вырабатывают трехфазный переменный ток напряжением 6,3 и 10,5 кВ при частоте 50 Гц. Передача электроэнергии от станций, расположенных далеко от потребителей, производится напряжением 35, 110 и 220 кВ и выше. Для получения такого напряжения строят повышающие подстанции. Передаваемая энергия принимается понижающими подстанциями, расположенными в районах ее потребления. На понижающих подстанциях напряжение понижается до 6-10 кВ.
Так как на подвижном составе городского электротранспорта устанавливают электродвигатели постоянного тока, то для получения постоянного тока должны строится подстанции с установками, преобразующими трехфазный ток, поступающий из энергосистемы, в постоянный ток нужного напряжения. Такие установки называются тяговыми преобразовательными подстанциями.
Преобразовательным агрегатом подстанции являются ртутные выпрямители. Ртутный выпрямитель представляет собой аппарат, пропускающий ток только в одном направлении. Работа ртутного выпрямителя основана на особом свойстве электрической дуги в сосуде выпрямителя – гореть между ртутным катодом м только тем анодом, который имеет положительный потенциал по отношению к катоду. Процесс горения дуги в выпрямителе протекает следующим образом. При включении выпрямителя в цепь переменного тока между анодом и катодом возникает электрическое поле. На поверхности ртутного катода под воздействием тока образуется раскаленное пятно, излучающее большой поток электронов, движущихся в одном направлении [8].
Ртутные выпрямители обладают высоким коэффициентом полезного действия, который остается почти постоянным даже при значительных изменениях нагрузки. Это имеет большое практическое значение, т.к.на подстанциях городского электротранспорта нагрузка в течение рабочего дня изменяется в широких пределах.
Электрическая энергия передается троллейбусам по контактным проводам через токосъемники, представленные на рисунке 1.4, установленные на подвижном составе.
Рисунок 1.4 – Токосъемники, подключенные к контактной сети
