- •2 Биполярные транзисторы.
- •3 Дифференциальные усилители переменного напряжения.
- •4 Полевые транзисторы.
- •Основные параметры и характеристики
- •6 Шумы в транзисторах.
- •7 Усилители с модуляцией и демодуляцией.
- •8 Параметры операционного усилителя.
- •9. Двухканальный усилитель на базе дифференциального усилителя.
- •10 Эквивалентная схема биполярного транзистора.
- •11 Ограничители на полупроводниковых диодах.
- •12 Параметрический стабилизатор напряжения.
- •14 Преобразователи сопротивления в напряжение.
- •15 Повторитель на операционном усилителе.
- •16 Схемы включения биполярных транзисторов.
- •17 Усилитель на полупроводниковом приборе.
- •18 Элементы диодно-транзисторной логики.
- •19 Элементы транзисторно-транзисторной логики.
- •20. Многовходовой сумматор-вычислитель на базе операционного усилителя
- •21 Усилитель с отрицательной обратной связью.
- •22. Интегральные микросхемы на биполярных транзисторах.
- •2 4 Основные параметры кварцевого резонатора..
- •25 Эквивалентная схема оу.
- •26 Триггеры на транзисторах.
- •27 Полупроводниковые стабилитроны и стабилизаторы напряжения.
- •28 Триггер Шмитта.
- •30.Полная частотная коррекция
- •31 Регистры
- •32 Инвертирующий усилитель
- •34 Неинвертирующий усилитель
- •35 Сумматоры ,основные понятия и определения
- •36 Преобразователи кодов, основные понятия и определения.
- •38 Селекторы-мультиплексоры.
- •41 Генераторы с кварцевой стабилизацией
- •42 Эквивалентная схема биполярного транзистора
- •49 Шифраторы и дешифраторы.
- •56 Схема об.
- •57 Схема оэ.
- •58 Физика процесса в бпт.
- •59 Параллельное соединение стабилитронов.
- •60 Последовательное соединение стабилитронов.
- •62 Рабочий режим пд
- •63 Вахпд.
- •64 Переход метал-пп.
- •69 Рабочий режим бпт.
- •69 Физика процесса в пт
- •70.Схемы питания пт.
- •71 Физика процесса и устройства мдпт
- •73 Устройство и физика процесса в тиристорах.
- •74Туннельные диоды.
- •75.Типы пп резисторов, основные характеристики.
- •76 Составной транзистор, основные характеристики.
- •78 Приборы тлеющего разряда
- •7 9Фоторезисторы.
- •80 Фотодиоды.
- •81Фототранзисторы.
- •82.Светоизлучающие диоды.
- •83 Сравнение н-параметров об и оэ.
- •84Варикапы.
- •85 Фотоэлектронные умножители.
- •86 Фототиристоры.
- •87 Генератор пилообразного напряжения на тиристоре.
- •88 Приборы с гетерогенными переходами.
- •89 Цифро-аналоговые преобразователи.
- •45. Дифференциальный усилитель с оос.
- •43. Инструментальные дифференциальные усилители.
- •50. Инверторы на комплементарных транзисторах.
89 Цифро-аналоговые преобразователи.
Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:
По виду выходного сигнала: с токовым выходом и выходом в виде напряжения;
По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода;
По числу ЦАП на кристалле: одноканальные и многоканальные;
По быстродействию: умеренного и высокого быстродействия.
Очень часто ЦАП входит в состав микропроцессорных систем.
Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1.
45. Дифференциальный усилитель с оос.
Если петлевое усиление имеет действительное и отрицательное значение, то ОС отрицательная. При отрицательной ОС фазы входного сигнала усилителя и сигнала ОС отличаются на угол , то есть на входе схемы разность сигналов (входного и обратной связи).
Введение отрицательной ОС (ООС) уменьшает коэффициент усилителя:
KU ООС = K/(1 + K). (7)
Это также проявляется в уменьшении наклона его передаточной характеристики. ООС находит самое широкое применение в усилителях.
Как было отмечено ранее, в устройствах на ОУ широко используется ООС. Благодаря исключительно высокому коэффициенту усиления, которым обладают ОУ, введение ООС позволяет выполнить устройства с высокими качественными показателями, имеющими точное численное значение, создать узлы аппаратуры с параметрами, зависящими только от свойств цепи ОС. Кроме того, введение ООС уменьшает коэффициент усиления напряжению до некоторого значений, что позволяет усиливать в большем диапазоне; при этом увеличивается полоса усиливаемых частот и происходит уменьшение нелинейных и частотных искажений.
43. Инструментальные дифференциальные усилители.
Инструментальный дифференциальный усилитель
Зачастую, для предварительного усиления слабого дифференциального сигнала в высокоточных системах от усилителя требуются высокие параметры точности коэффициента усиления, а так же большое входное сопротивление. Точность коэффициента усиления обычно обеспечивают применением глубокой отрицательной обратной связи (ООС), охватывая ею операционный усилитель(ОУ). Однако дифференциальный усилитель на базе одного ОУ не обеспечивает высокого входного сопротивления порядка нескольких МОм, поэтому зачастую применяют сборку, аналогичную изображённой на схеме (рис.3). Здесь входное дифференциальное напряжение (V2-V1) подаётся на неинвертирующий вход ОУ, который не используется для создания ОС, а собственное входное сопротивление прецизионных ОУ составляет значения порядка нескольких сотен МОм. Инструментальные дифференциальные усилители применяются для точного съёма напряжений с плеч электронного моста и других датчиков с малым выходным импедансом. Промышленностью выпускаются микросхемы, подобные приведённой схеме, с дополнительными возможностями по настройке коэффициента усиления, фильтрации шумов и частотной коррекции.
Рис. 3
