Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
+++Шпоры на экзамен по биохимии.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
645.36 Кб
Скачать

42 Биохимия крови. Состав крови. Буферные системы крови. Белки плазмы крови. Значение определения нормальных и патологических компонентов крови.

Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты.

Благодаря работе сердца кровь циркулирует по замкнутой системе кровеносных сосудов и осуществляет транспорт различных химических веществ. Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция); доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция); уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция); перемещает промежуточные продукты обмена веществ, синтез и использование которых происходит в разных органах.

Кровь участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням.

Защитная функция крови имеет две стороны. Во-первых, в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного реагирования, которые защищают организм от любой чужеродной молекулы. Во-вторых, это способность крови свёртываться. При повреждении сосуда прерывается замкнутость циркуляции крови, а уменьшение количества крови может привести к серьёзным нарушениям функций клеток, вплоть до их гибели. Кровь здорового человека образует тромб в месте повреждения, который закупоривает просвет повреждённого сосуда и останавливает кровотечение.

Кровь поддерживает кислотно-щелочной и водный баланс организма. В норме рН крови составляет 7,36-7,4. Сохранение постоянства рН является важнейшей задачей, так как в кровь выделяется большое количество кислых (например, лактат, кетоновые тела, угольная кислота), а также основных (аммиак) продуктов метаболизма. Регуляцию рН осуществляют буферные системы крови, которые подробно рассмотрены в курсе физиологии.

Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях.

Химический состав растворимых в плазме крови веществ относительно постоянен, так как существуют мощные нервные и гуморальные механизмы, поддерживающие гомеостаз (постоянство внутренней среды). Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Диапазон концентраций разных веществ плазмы крови у здорового человека представлен в специальных биохимических справочниках и является важнейшим материалом для медицинской биохимии.

Кровь связана со всеми тканями организма, поэтому возникновение патологического процесса в каком-либо органе приводит к изменению биохимических показателей крови. Эта информация может быть ценной при постановке диагноза и оценке эффективности лечебных мероприятий.

Белки плазмы крови:

Белковую фракцию плазмы составляет несколько десятков различных белков. Большая величина молекул дает основание относить их к коллоидам. Присутствие коллоидов в плазме обусловливает ее вязкость.

Белки плазмы различают по строению и функциональным свойствам. Их количественное и качественное определение производят специальными методами электрофореза, основанного на различной подвижности белков в электрическом поле, ультрацентрифугирования, иммуноэлектрофореза, при котором в электрическом поле передвигаются целые комплексы связанных со специфическими антителами молекул. В плазме крови человека содержится примерно 200—300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген.

Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Известно, что, например, одна молекула альбумина может одновременно связать 25—50 молекул билирубина.

Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций: α1—, α2—, β3— и γ—глобулины. С помощью иммуноэлектрофореза эти фракции подразделяют на мелкие субфракции более однородных белков. Так, во фракции α1—глобулинов имеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа — мукопротеины — содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, в котором на каждую белковую молекулу приходится восемь атомов меди. Таким образом связывается около 90% всей содержащейся в плазме меди. В плазме имеются еще тироксинсвязывающий и другие белки.

β—глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Они удерживают в растворе около 75% всех липидов плазмы. Металлсодержащий белоктрансферрин осуществляет перенос железа кровью. Каждая молекула трансферрина несет два атома железа.

γ—глобулины характеризуются самой низкой электрофоретической подвижностью. В эту фракцию белков входят различные антитела, защищающие организм от вторжения вирусов и бактерий. Количество этой фракции возрастает при иммунизации животных. К γ—глобулинам относятся также агглютинины крови.

Фибриноген занимает промежуточное положение между фракциями β— и γ—глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством становиться нерастворимым в определенных условиях (под воздействием тромбина), принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Сыворотка крови по своему составу отличается от плазмы только отсутствием фибриногена.

Альбумины и фибриноген образуются в печени, глобулины  в печени красном костном мозгу, селезенке, лимфатических узлах. При нормальном питании в организме человека за 1 сут вырабатывается около 17 г альбумина и

5 г глобулина. Период полураспада альбумина составляет 10—15 сут глобулина — 5 сут.

Белки плазмы вместе с электролитами являются ее функциональными элементами. С их помощью в значительной степени осуществляется транспорт веществ из крови к тканям. К числу транспортируемых компонентов относятся питательные вещества, витамины, микроэлементы, гормоны, ферменты а также конечные продукты обмена веществ.   

Из питательных веществ самую большую часть составляют липиды. Их концентрация колеблется в широком диапазоне, но максимальное содержание отмечается после приема жирной пищи. На относительно постоянном уровне удерживаются переносимая плазмой глюкоза (44,4—66,6 ммоль/л) и аминокислотные  остатки (4 мг%). Витамины могут переноситься либо в связанному белками, либо в свободном виде. Их уровень в плазме также подвержен колебаниям и зависит не только от их содержания в продуктах питания и синтеза кишечной флорой, но и от наличия особого фактора, облегчающего их всасывание в кишке.

Микроэлементы циркулируют в плазме в виде металлсодержащих белков (Со и др.) или белковых комплексов (Fe). Из конечных продуктов обмена наибольшей концентрации, особенно при тяжелой мышечной работе и недостатке кислорода, достигает молочная кислота. Не использованные организмом и подлежащие удалению конечные продукты обмена веществ (мочевина, мочевая кислота, билирубин, аммиак) доставляются плазмой к почкам, где и удаляются с мочой.

Белки плазмы в силу способности связывать большое число циркулирующих в плазме низкомолекулярных соединений участвуют, кроме того, в поддержании постоянства осмотического давления. Им принадлежит ведущая роль в таких процессах, как образование тканевой жидкости, лимфы, мочи, всасывание воды.

49 Роль ферментов: щелочной и кислой фосфатазы в минеральном обмене тканей зуба.

43.Кровь. Основные функции. Буферные системы крови, механизм действия. Факторы, влияющие на кислотно-основное равновесие. Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты. Благодаря работе сердца кровь циркулирует по замкнутой системе кровеносных сосудов и осуществляет транспорт различных химических веществ. Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция); доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция); уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция); перемещает промежуточные продукты обмена веществ, синтез и использование которых происходит в разных органах. Кровь участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням. Защитная функция крови имеет две стороны. Во-первых, в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного.-вторых, это способность крови свёртываться. Кровь поддерживает кислотно-щелочной и водный баланс организма. В норме рН крови составляет 7,36-7,4. Сохранение постоянства рН является важнейшей задачей, так как в кровь выделяется большое количество кислых (например, лактат, кетоновые тела, угольная кислота), а также основных (аммиак) продуктов метаболизма. Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях. Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Буферные системы – это соединения, противодействующие резким изменениям концентрации ионов Н+. Любая буферная система - это кислотно-основная пара: слабое основание (анион, А–) и слабая кислота -гемоглобиновая- В качестве кислой части буфера выступает оксигенированный гемоглобин H‑HbO2. Он имеет выраженные кислотные свойства и в 80 раз легче отдает ионы водорода, чем восстановленный Н‑Нb, выступающий как основание. - Бикарбонатная буферная система- При поступлении в кровь ионов H+ (т.е. кислоты) ионы бикарбоната натрия взаимодействуют с ней и образуется угольная кислота: -белковая-Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим  амфотерным свойствам. Их вклад в буферизацию плазмы крови около 5%. В кислой среде подавляется диссоциация СООН‑групп аминокислотных радикалов (в аспарагиновой и глутаминовой кислотах), а группы NH2 (в аргинине и лизине) связывают избыток Н+. При этом белок заряжается положительно. В щелочной среде усиливается диссоциация COOH‑групп, поступающие в плазму ионы Н+связывают избыток ОН–‑ионов и pH сохраняется. Белки в данном случае выступают как кислоты и заряжаются отрицательно. -фосфатная- Она образована гидрофосфатом (HPO42–) и дигидрофосфатом (H2PO4–). Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе обладает щелочными свойствами При взаимодействии кислот (ионов Н+) с двузамещенным фосфатом (HPO42‑) образуется дигидрофосфат. В результате концентрация ионов Н+ понижается

44.Белки крови. Особенности строения и функции иммуноглобулинов. Белки плазмы различают по строению и функциональным свойствам. В плазме крови человека содержится примерно 200—300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген. Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций. Во фракции α1—глобулинов имеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа — мукопротеины — содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, β—глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Металлсодержащий белоктрансферрин осуществляет перенос железа кровью. Фибриноген занимает промежуточное положение между фракциями β— и γ—глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Гамма-глобулины В этой фракции содержатся в основном антитела - белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента. Функция антител - защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называются антигенами. Главные классы антител в крови: иммуноглобулины G (IgG); иммуноглобулины M (IgM); иммуноглобулины A (IgA), к которым относятся IgD и IgE. Только IgG и IgM способны активировать систему комплемента. С-реактивный белок также способен связывать и активировать С1-компонент комплемента, но эта активация непродуктивна и приводит к накоплению анафилотоксинов. Накопившиеся анафилотоксины вызывают аллергические реакции. В состав белковой части иммуноглобулина входят всего 4 полипептидные цепи: 2 одинаковые легкие и 2 одинаковые тяжелые цепи. Молекулярная масса легкой цепи составляет 23 кДа, а тяжелой - от 53 до 75 кДа. С помощью дисульфидных (-S-S-) связей (мостиков) тяжелые цепи соединены между собой и легкие цепи так Fab - фрагмент может связываться с соответствующим антигеном слабыми типами связей. Именно этот участок обеспечивает специфичность связи иммуноглобулина со своим антигеном. Выделяют также Fc-фрагмент - константная для всех иммуноглобулинов часть молекулы. Формируется за счет Н-цепей. Fc - фрагмент обеспечивает иногда прохождение иммуноглобулина через биологическую мембрану.

45. Катаболизм гемоглобина. Виды билирубина. Желтухи. Продолжительность жизни эритроцитов составляет 120 дней, затем они разрушаются и освобождается гемоглобин. Главными органами, в которых происходят разрушение эритроцитов и распад гемоглобина, являются печень, селезенка и костный мозг.Распад гемоглобина в печени начинается с разрыва α-метиновой связи между I и II кольцами порфиринового кольца. Этот процесс катализируется НАДФ-содержащей оксидазой и приводит к образованию зеленого пигмента вердоглобина . Дальнейший распад вердоглобина, происходит спонтанно с освобождением железа, белка-глобина и образованием одного из желчных пигментов – биливердина. Образовавшийся биливердин ферментативным путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом.Образовавшийся во всех этих клетках билирубин поступает в печень, откуда вместе с желчью попадает в желчный пузырь . Билирубин, образовавшийся в клетках системы макрофагов, называется свободным, или непрямым, билирубином, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови и для его определения в крови необходимо предварительное осаждение белков спиртом. В крови взрослого здорового человека содержится относительно постоянное количество общего билирубина – от 4 до 26 мкмоль/л, в среднем 15 мкмоль/л. Около 75% этого количества приходится на долю непрямого билирубина. Повышение его концентрации в крови до 35 мкмоль/л приводит к желтухе. Непрямой билирубин, поступая с током крови в печень, подвергается обезвреживанию путем связывания с глюкуроновой кислотой.К билирубину присоединяются 2 остатка глюкуроновой кислоты с образованием сравнительно индифферентного комплекса – билирубин-диглюкуронида, В желчи всегда присутствует прямой билирубин. Сначала глюкуроновая кислота отщепляется от комплекса с билирубином и освободившийся билирубин подвергается восстановлению в стеркобилиноген, который выводится из кишечника.Последний легко окисляется под действием света и воздуха в стеркобилин. промежуточными продуктами восстановления являются последовательно мезобилирубин и мезобилиноген (уробилиноген). После всасывания небольшая часть мезобилиногена поступает через воротную вену в печень, где подвергается разрушению.Кроме того, очень небольшая часть стеркобилиногена после всасывания через систему геморроидальных вен попадает в большой круг кровообращения, минуя печень, и в таком виде выводится с мочой. В зависимости от вида нарушений метаболизма билирубина и причин гипербилирубинемии можно выделить три типа желтух .Надпечёночные желтухи — возникают в связи с усилением процесса образования билирубина. При этом повышается его непрямая (неконъюгированная) фракция. Печёночные желтухи. Печень захватывает непрямой билирубин, превращает (коньюгирует с глюкуроновой кислотой) его в прямой, а секретировать в желчь не может. И он поступает обратно в кровь. Поэтому при этом типе желтухи повышается прямой билирубин. Подпечёночные желтухи — возникают при нарушении оттока желчи по внепеченочным желчным протокам (обтурационная желтуха).

46. Белки соединительной ткани – коллаген, эластин, протеогликаны. Особенности структуры и функции. Роль витамина С в функционировании соединительной ткани. Межклеточный матрикс соединительной ткани характеризуется наличием волокнистых структур. Коллаген – наиболее распространенный белок (25-30% от всех белков человека). Более 80% всех белков он составляет в коже, костях, связках, сухожилиях, хрящах. Поэтому он долгое время считался белком соединительной ткани. Коллаген характеризуется особым АК составом: - 1/3 всех АК остатков приходится на глицин; - значительное количество пролина (до 10%); - встречается гидроксипролин и гидроксилизин. Большая часть представлена триадами –ГЛИ-Х-Y-, где Х – чаще пролин, а Y – чаще гидроксипролин. Эта регулярная последовательность представлена левозакрученной коллагеновой спиралью, более вытянутой, чем -спираль. Каждая из спиралей представляет собой полипептидную цепь. Несколько спиралей соединяются в одну суперспираль, удерживающуюся за счет водородных связей между субъединицами. Длинна суперспирали примерно 300 нМ. По АК составу выделяют 2 вида коллагеновых цепей:- 1;- 2. Синтез коллагена. Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных. 1-й этап Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген. 2-й этап С помощью сигнального пептида "пре" транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется "пре" - образуется "проколлаген". 3-й этап Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ). При недостатке витамина "С" - аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления. 4-й этап Посттрасляционная модификация - гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина. 5-й этап Заключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации. 6-й этап Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность. 7-й этап Ковалентное "сшивание" молекулы тропоколлагена по принципу "конец-в-конец" с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь. Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном. Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена). 8-й этап Ассоциация молекул нерастворимого коллагена по принципу "бок-в-бок". Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи. Эластин еще более гидрофобен, чем коллаген. В нем до 90 % гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется -эластин. За счет остатков лизина происходит взаимодействие между молекулами -эластина. В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура десмозина. Десмозин - это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул -эластина. Витамин С – участвует в синтезе коллагена путем содействия специальным ферментами. 

47. Мышечная ткань. Строение саркомера. Белки мышц – актин, миозин. Механизм мышечного сокращения. Источники энергии для мышечного сокращения. Мышечная ткань составляет 40 % от веса тела человека. Биохимические процессы, протекающие в мышцах, оказывают большое влияние на весь организм человека. Функция мышц - и постоянной температуре. Ни один искусственный механизм к этому не способен. Механическое движение, в котором химическая энергия превращается в механическую при постоянном давлении. Поперечно-полосатая мускулатура.  Функциональная единица - саркомер. Толстая нить. Состоит из молекул белка миозина. Миозин - крупный олигомерный белок, молекулярная масса 500 кДа, состоит из 6 субъединиц, попарно одинаковых. Тяжелая цепь: на С-конце - -спираль, на N-конце - глобула. При соединении двух тяжелых цепей С-концевыми участками образуется суперспираль. Две легкие цепи входят в состав глобулы (головки). Стержневой участок суперспирали имеет 2 отдела, где спирали оголены - эти места открыты для действия протеолитических ферментов и имеют повышенную подвижность. Миозин. Отличается большим содержанием глутаминовой кислоты. Имеет отрицательный заряд. Он связывает ионы Са++ и Mg++. В присутствии Са++ миозин обладает активностью АТФ-азы. В присутствии Mg++ миозин связывает АТФ и АДФ. Способен взаимодействовать с актином. Молекула миозина длинная – 160 нм и тонкая (ширина её – 2 нм), представляет собой две полипептидные цепи. Есть т.н. головки миозина. Актин Имеет три формы. - мономерная форма: G–актин (глобулярная структура, глобулы полярные), связывается с АТФ; - димерная; - полимерная. Мономеры могут соединяться в присутствии АТФ в димеры (G+G+АТФG-АТФ-G+ Фн), из димеров могут образовываться полимеры: F–актин (от «фибрилла»). Молекула миозина обладает ферментативной активностью (АТФ-азная активность: АТФ + Н2О-->АДФ + Ф). Активные центры расположены на головках миозина. Тонкие нити. В состав тонких нитей входят три белка: сократительный белок актин; регуляторный белок тропомиозин; регуляторный белок тропонин. Актин - небольшой глобулярный белок, его молекулярная масса - 42 кDа. G-актин представляет собой глобулу. В физиологических условиях его молекулы способны к спонтанной агрегации, образуя F-актин. В состав тонкой нити входят две F-актиновые нити, образуется суперспираль (2 перекрученные нити). В области Z-линий актин прикрепляется к a-актинину. Механизм мышечного сокращения. Сродство комплекса "миозин-АТФ" к актину очень низкое. Сродство комплекса "миозин-АДФ" к актину очень высокое. Актин ускоряет отщепление АДФ и Ф от миозина и при этом происходит конформационная перестройка - поворот головки миозина. 1-я стадия Фиксация АТФ на головке миозина. 2-я стадия Гидролиз АТФ. Продукты гидролиза (АДФ и Ф) остаются фиксированными, а выделившаяся энергия аккумулируется в головке. Мышца готова к сокращению. 3-я стадия Образование комплекса "актин-миозин". Он очень прочен. Может быть разрушен только при сорбции новой молекулы АТФ. 4-я стадия Конформационные изменения молекулы миозина, в результате которых происходит поворот головки миозина. Освобождение продуктов реакции (АДФ и Ф) из активного центра головки миозина. Источники энергии следующие. 1.Специальные реакции субстратного фосфорилирования.  Креатинфосфокиназная реакция.Это самый быстрый способ ресинтеза АТФ. Запасов креатинфосфата хватает для обеспечения мышечной работы в течение 20 с.Не требует присутствия кислорода, не дает побочных нежелательных продуктов, включается мгновенно. Его недостаток - малый резерв субстрата (хватает только на 20 с работы). Обратная реакция может протекать в митохондриях с использованием АТФ, образовавшейся в процессе окислительного фосфорилирования. Миокиназная реакция. Протекает только в мышечной ткани!АДФ --------> АТФ + АМФ.Реакция катализируется аденилаткиназой.Главное значение этой реакции заключается в образовании АМФ - мощного аллостерического активатора ключевых ферментов гликолиза, гликогенолиз. 2.Гликолиз, гликогенолиз. Не требуют присутствия кислорода (анаэробные процессы). Обладают большим резервом субстратов. Используется гликоген мышц (2 % от веса мышцы) и глюкоза крови, полученная из гликогена печени.  3 АТФ на один глюкозный остаток гликогена.Накопление недоокисленных продуктов (лактат).Гликолиз начинается не сразу - только через 10-15 с после начала мышечной работы. 3.Окислительное фосфорилирование. синтезируется 38 молекул АТФ при окислении одной молекулы глюкозы.Имеет самый большой резерв субстратов: может использоваться глюкоза, гликоген, глицерин, кетоновые тела.Продукты распада (CO2 и H2O) практически безвредные.Недостаток: требует повышенных количеств кислорода.

48. Биохимия нервной ткани. Особенности метаболизма мозга. Образование и роль производных аминокислот: серотонина, ГАМК, гистамина, других биогенных аминов. Обезвреживание аммиака в нервной ткани. Химические компоненты нервной ткани. ЦНС координирует и регулирует обмен веществ в организме. Она также обеспечивает взаимосвязь организма с внешней средой. Химический состав нервной ткани сложен и неоднороден. Например, в сером веществе 77-81% воды, а в белом – 70%. Количество белков в нервной ткани меньше, чем в мышечной или в печени. При этом белков больше в сером веществе, и меньшее их количество содержится в периферической нервной ткани. В функционально более активных структурах белков больше. Характерным для белков нервной ткани является то, что они находятся в комплексе с другими соединениями, т.е. это сложные белки. Больше всего липопротеинов (ЛП). Особенно много их в миелиновых оболочках. Есть фосфопротеины – фосфат присоединяется к белку через серин (-NH-CH(CH2OPO3H2)-CO-). Также в нервной ткани есть нуклеопротеины (НП) (дезоксирибонуклеопротеины (ДНП), рибонуклеопротеины (РНП)), гликопротеины (например, нейрокератин). Особенности обмена веществ в нервной ткани. Энергетический обмен. В ткани головного мозга увеличено клеточное дыхание (преобладают аэробные процессы). Мозг потребляет большее количество кислорода, чем постоянно работающее сердце, в 20 раз больше, чем покоящиеся мышцы. 20-25% всего кислорода приходится на долю головного мозга. У детей до 50%. Ткань головного мозга использует весь кислород, находящийся в ней, за 10 секунд. Следовательно, важное значение имеет кровоснабжение головного мозга. при нарушении кровообращения через 6-8 секунд наступает потеря сознания. Дыхательный коэффициент (отношение объема СО2 к объему О2) в тканях головного мозга приблизительно равно 1, следовательно углеводы – это основной субстрат для окисления. Мозг – единственный орган, который использует в качестве источника энергии практически одну только глюкозу (при патологии могут использоваться кетоновые тела), т.е. функционирование головного мозга зависит от снабжения глюкозой. 70% АТФ в тканях головного мозга используется для поддержания ионных градиентов (энергия используется для удаления ионов натрия из клетки). Углеводный обмен. Исходным субстратом для окисления является глюкоза (не гликоген!). Гипогликемия приводит к судорогам и, возможно, к смерти. 85% глюкозы окисляется аэробно (до углекислого газа и воды), 15% - анаэробно (до лактата). Анаэробное окисление – это аварийный механизм. Гликогена содержится немного – 0,1%, но интенсивность его обновления достаточно велика. Весь гликоген в ткани головного мозга обновляется за 4 часа. Распад гликогена идет 2 путями: - фосфорилический (с участием фосфорилазы); - гидролитический - -амилаза отщепляет остатки глюкозы. Нарушения обмена углеводов ведут к нарушению функций головного мозга. При авитаминозе В1 нарушается превращение ПВК, следовательно развиваются полиневриты. Угнетение окисления углеводов ведет к развитию торможения в нервной системе (используется при разработке снотворных веществ). Во сне потребление глюкозы снижается, а при возбуждении увеличивается. Белковый обмен. При возбуждении увеличивается распад белков и, как следствие, образуется больше аммиака и азота АК. При торможении распад белков снижается. У человека в больших количествах образуется аммиак, являющийся токсичным веществом для нервной ткани и поэтому он должен быть обезврежен. Обезвреживание происходит путем образования амидов моноаминодикарбоновых АК: [рис. NH2-CH(CH2-CH2-COOH)-COOH (это глутаминовая кислота) +NH3 (над стрелкой глутамин-синтетаза, под Mg2+, АТФАДФ+Фн) NH2-CH(CH2-CH2-CONH2)-COOH (это глутамин)]. Этот процесс интенсивно протекает в нервной ткани, т.к. глутамин свободно выходит из клеток. Глутаминовая кислота играет особенную роль в обмене веществ: 1. связывает аммиак; 2. участвует в реакциях переаминирования, в результате которых образуются заменимые АК (аспарагиновая кислота); 3. подвергается декарбоксилированию: [рис. NH2-CH(CH2-CH2-COOH)-COOH (это глутаминовая кислота)  (над стрелкой глутамат-декарбоксилаза, под – ПФ(В6)) NH2-CH2-CH2-CH2--COOH (это -аминомасляная кислота)]. Образующаяся -аминомасляная кислота является тормозящим нейромедиатором; 4. подвергается окислительному дезаминированию. В результате этого многие АК теряют NH2-группу; 5. является возбуждающим нейромедиатором; 6. стабилизирует содержание ионов калия в клетках нервной ткани. До 10% глюкозы используется в качестве субстрата для синтеза глутаминовой кислоты. Липидный обмен. В нервной ткани липиды не играют энергетической роли. Содержащиеся в основном фосфолипиды и холестерин играют структурную функцию. Нейтральные жиры играют защитную функцию. В клетках головного мозга идет активный метаболизм аминокислот. В головном мозге концентрация аминокислот почти в 8 раз выше, чем в плазме крови, и существенно выше, чем в печени. В особенности высоким является уровень глутамата (примерно 5-10 мМ) и аспартата (2-3 мМ). Эти аминокислоты образуются в реакции трансаминирования из промежуточных метаболитов цитратного цикла, 2-оксоглутарата и оксалоацетата. В тканях мозга интенсивно протекают метаболические превращения аминокислот, такие, как окислительноедезаминирование, трансаминирование, модификация боковой цепи и др. В особенности важной для нормального функционирования головного мозга является реакция декарбоксилирования, в результате которой образуется γ-аминомасляная кислота (γ-аминобутират) (ГАМК, GABA) (предшественник — глутамат) и биогенные амины. Биосинтез и деградацию глутамата можно рассматривать, как побочный путь цитратного цикла (ГАМК-шунт), который в отличие от основного цикла не приводит к синтезу гуанозин-5'-трифосфата. ГАМК-шунт характерен для клеток  центральной нервной системы, но не играет существенной роли в других тканях.Некоторые аминокислоты, например глицин, аспартат, глутамат, ГАМК, выполняют в нейронах  функцию медиаторов. Они хранятся в синапсах и выделяются при поступлении нервного импульса. Переносчики индуцируют или ингибируют потенциал действия, контролируя тем самым возбуждение соседних нейронов. Обезвреживание аммиака. 1.в митохондриях орнитинкарбамоилтрансфераза переносит карбамоильную группу карбомоилфосфата на орнитин-цитруллин 2.с затратой АТФ аргинитосукцинатсинтетаза связ.цитруллин с аспартатом-аргининосукцинат 3.аргининосукциназа расщепляет на аргинин и фумарат 4.аргиназа гидролизует аргинин на орнитин и мочевину 5.орнитин связ.с новой молекулой карбамоилфосфата и новый цикл.

49. Биохимия костной ткани. Роль органических и минеральных компонентов в функционировании костной ткани. Роль витаминов С и D в формировании костной ткани. В ней преобладает межклеточное вещество, содержащее большое количество минеральных компонентов, главным образом - солей кальция. Основные особенности кости - твердость, упругость, механическая прочность. В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом (смотрите рисунок) и аморфным фосфатом кальция. Кроме них встречаются карбонаты, фториды, гидроксиды и значительное количество цитрата. Химический состав костной ткани (в%%): 20% - органический компонент, 70% - минеральные вещества, 10% - вода. Губчатое вещество: 35-40% - минеральных веществ, до 50% - органические соединения, содержание воды - 10%. Особенность минерального компонента в том, что фактическое соотношение кальций/фосфор равно 1,5, хотя расчетное соотношение должно быть 1,67. Это позволяет кости легко связывать или отдавать ионы фосфата, поэтому кость - это депо для минералов, особенно для кальция. Основной белок костной ткани - коллаген, который содержится в количестве 15% - в компактном веществе, 24% - в губчатом веществе. Количество неколлагеновых белков составляет от 5 до 8%. В основном это белки- гликопротеины и белково-углеводные комплексы - протеогликаны. Костный коллаген - коллаген типа 1 - в нем больше, чем в других видах коллагена, содержится оксипролина, лизина и оксилизина, отрицательно заряженных аминокислот, с остатками серина связано много фосфата, поэтому костный коллаген - это фосфопротеин. Благодаря своим особенностям костный коллаген принимает активное участие в минерализации костной ткани. В зрелом организме процессы минерализации и резорбция кости находятся в состоянии динамического равновесия. Минерализация - это формирование кристаллических структур минеральных солей костной ткани. Активное участие в минерализации принимают остеобласты. Для минерализации требуется много энергии ( в форме АТФ ). В состав костей входит 99% всего кальция организма, 87% фосфора, ~ 60% магния и -25% натрия. Кальций в костях находится в форме минерала гидроксиапатита, примерный состав которого Са10(РО4)6(ОН)2. Гидроксиапатит образует кристаллы, имеющие обычно размер 20 × 5 × 1,5 нм. В костной ткани содержится много микроэлементов, таких как медь, стронций, барий, цинк, фтор и др., которые играют важную роль в обмене веществ в организме. Минеральная часть костей включает также карбонаты, гидроксиды и цитраты. Минеральный состав зуба различен в разных его частях. Твёрдые части зуба (эмаль, дентин и цемент) содержат от 70% (цемент и дентин) до 96 - 97% (эмаль) неорганических веществ. Основную часть этих веществ составляют фосфат кальция, входящий в состав кристаллов гидроксиапатита (75%), а также карбонат и фторид кальция. В частности, при недостаточном количестве витамина С в организме подавляется созревание коллагеновых волокон, ослабляется деятельность остеобластов, уменьшается их фосфатазная активность, что приводит к остановке роста кости. При дефиците витамина D не происходит полной кальцификации органической матрицы кости, что обусловливает размягчение костей. Витамин А поддерживает рост костей, но избыток этого витамина способствует усилению разрушения остеокластами метаэпифизарных хрящей.

50. Гормоны передней доли гипофиза. Соматотропин. Химическая природа, биологическая роль. Гормоны передней доли гипофиза делятся на две группы: гормон роста и пролактин и тропные гормоны (тиреотропин, кортикотропин, гонадотропин). 1)Гормон роста (соматотропин) принимает участие в регуляции роста, усиливая образование белка. Нарушение соматотропной функции гипофиза приводит к различным изменениям в росте и развитии организма человека: если имеется гиперфункция в детском возрасте, то развивается гигантизм; при гипофункции – карликовость. При гиперфункции у взрослого человека, но увеличиваются размеры тех частей тела, которые еще способны расти (акромегалия). Пролактин способствует образованию молока в альвеолах, но после предварительного воздействия на них женских половых гормонов (прогестерона и эстрогена). Пролактин обладает лютео-тропным действием, способствует продолжительному функционированию желтого тела и выработке им прогестерона. Ко второй группе гормонов относят: 1) тиреотропный гормон (тиреотропин). Избирательно действует на щитовидную железу, повышает ее функцию. При сниженной выработке ти-реотропина происходит атрофия щитовидной железы, при гиперпродукции – разрастание; 2) адренокортикотропный гормон (кортикотро-пин). Стимулирует выработку глюкокортикоидов надпочечниками. Кортикотропин вызывает распад и тормозит синтез белка, является антагонистом гормона роста. Он тормозит развитие основного вещества соединительной ткани, уменьшает количество тучных клеток, подавляет фермент гиалуро-нидазу, снижая проницаемость капилляров. Этим определяется его противовоспалительное действие. 3) гонадотропные гормоны (гонадотропины – фол-литропин и лютропин). Присутствуют как у женщин, так и у мужчин; а) фоллитропин (фолликулостимулирующий гормон), стимулирующий рост и развитие фолликула в яичнике.у мужчин под его влиянием происходит образование сперматозоидов; б) лютеинизирующий гормон (лютропин), стимулирующий рост и овуляцию фолликула с образованием желтого тела. Он стимулирует образование женских половых гормонов – эстрагенов. Лютропин способствует выработке андрогенов у мужчин.

51. Гормоны задней доли гипофиза: окситоцин, вазопрессин. Химическая природа. Биологическая роль. Вазопрессин выполняет две функции: 1) усиливает сокращение гладких мышц сосудов; 2) угнетает образование мочи в почках. Антидиуретическое действие обеспечивается способностью ва-зопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения). Окситоцин избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлек-торно способствует выделению окситоцина из нейрогипофиза.

52. Гормоны поджелудочной железы. Инсулин, глюкагон. Инсулин, глюкагон. Строение, биороль. Морфологической единицей железы служат островки Лангерганса. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон, дельта-клетки – соматостатин. Инсулин регулирует углеводный обмен, снижает концентрацию сахара в крови, способствует превращению глюкозы в гликоген в печени и мышцах. Он повышает проницаемость клеточных мембран для глюкозы: попадая внутрь клетки, глюкоза усваивается. Инсулин задерживает распад белков и превращение их в глюкозу регулирует жировой обмен путем образования высших жирных кислот из продуктов углеводного обмена. В основе регуляции инсулина лежит нормальное содержание глюкозы в крови: гипергликемия приводит к увеличению поступления инсулина в кровь, и наоборот. Глюкагон повышает количество глюкозы, что также ведет к усилению продукции инсулина. Аналогично действует гормоны надпочечников. Вегетативная нервная система регулирует выработку инсулина посредством блуждающего и симпатического нервов. Блуждающий нерв стимулирует выделение инсулина, а симпатический тормозит. Глюкагон принимает участие в регуляции углеводного обмена, по действию на обмен углеводов он является антагонистом инсулина. На образование глюкагона в альфа-клетках оказывает влияние уровень глюкозы в крови. Гормон роста соматотропин повышает активность альфа-клеток. В противоположность этому гормон дельта-клетки – соматостатин тормозит образование и секрецию глюкагона, так как он блокирует вхождение в альфа-клетки ионов Ca которые необходимы для образования и секреции глюкагона. Физиологическое значение липокаина. Он способствует утилизации жиров за счет стимуляции образования липидов и окисления жирных кислот в печени. Функции ваготонина – повышение тонуса блуждающих нервов, усиление их активности. Функции центропнеина – возбуждение дыхательного центра, содействие расслаблению гладкой мускулатуры бронхов. Нарушение функции поджелудочной железы. Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), полидиспепсия (повышенная жажда). Увеличение сахара в крови у больных сахарным диабетом является результатом потери способности печени синтезировать гликоген из глюкозы, а клеток – утилизировать глюкозу. В мышцах также замедляется процесс образования и отложения гликогена. У больных сахарным диабетом нарушаются все виды обмена.

53. Гормоны мозгового слоя надпочечников: адреналин, норадреналин. Строение. Синтез. Биологическая роль. Механизм действия. Мозговой слой надпочечников вырабатывает гормоны, относящиеся к катехоламинам. Основной гормон – адреналин, вторым по значимости является предшественник адреналина – норадреналин. Значение адреналина и норадреналина Адреналин выполняет функцию гормона, он поступает в кровь постоянно, при различных состояниях организма (кровопотере, стрессе, мышечной деятельности). Возбуждение симпатической нервной системы приводит к повышению поступления в кровь адреналина и норадреналина. Адреналин влияет на углеродный обмен, ускоряет расщепление гликогена в печени и мышцах, расслабляет бронхиальные мышцы, угнетает моторику ЖКТ и повышает тонус его сфинктеров, повышает возбудимость и сократимость сердечной мышцы. Он повышает тонус кровеносных сосудов, действует сосудорасширяюще на сосуды сердца, легких и головного мозга. Адреналин усиливает работоспособность скелетных мышц. Повышение активности адреналовой системы происходит под действием различных раздражителей, которые вызывают изменение внутренней среды организма. Адреналин блокирует эти изменения. Норадреналин выполняет функцию медиатора, он входит в состав симпатина – медиатора симпатической нервной системы, он принимает участие в передаче возбуждения в нейронах ЦНС. Секреторная активность мозгового слоя надпочечников регулируется гипоталамусом. Липофильные гормоны.Гормон диффундирует через плазматическую мембрану и связывается внутренними рецепторами, образуется комплекс «гормон-рецептор», который активируется и действует на ДНК. G+RGRGR*ДНК. В ДНК выделяют гормон-чувствительный элемент (ГЧЭ). Под его влиянием изменяется транскрипция, что влияет на деградацию мРНК. Гормоны влияют на процессинг белка. Гормоны действуют непосредственно на ДНК, активируют ферменты, стимулируя их синтез.

54. Механизм действия гормонов белковой природы. Гормоны - мобильные посредники в регуляторной системе. Термин «гормон» - от латинского «побуждать к действию». Гормоны - это вещества, синтезирующиеся специальными железами, транспортируемые кровью и воздействующие на различные органы. Гормоны характеризуются: - синтезируются железами внутренней секреции; - действуют дистантно; - строгая специфичность действия; - высокая биологическая активность (концентрация 10-12-10-15 моль/л). В настоящее время установлено, что гормоны образуются во всех тканях. Выделяют гормоны: - с эндокринным эффектом - гормоны, синтезируемые ЖВС и поступающие в кровь; - с паракринным эффектом - гормоны образуются в одном месте и действуют рядом; - гормоны с аутокринным эффектом - действуют на ту ткань, где и образуются. Для каждого гормона существует ткань-мишень. По первым представлениям, ткань-мишень - это та ткань, в которой гормоны вызывают физиологические или биохимические изменения. Например, тиреотропный гормон действует на щитовидную железу, следовательно, ткань-мишень - щитовидная железа; для инсулина - печень, мышечная ткань, жировая ткань. По современным же представлениям, ткань-мишень - это ткань, в которой имеются рецепторы к данному гормону. Концентрация гормонов значительно ниже, чем других БАВ, поэтому клетка-мишень должна отличить гормоны от других соединений, что осуществляется с помощью рецепторов - молекул узнавания. Связывание гормона с рецептором основано на комплиментарности какого-то участка мембраны. G+RGRG+R Комплекс «гормон-рецептор» может быть более активен, чем просто гормон. По химическому строению: 1. белково-пептидные гормоны: гормоны гипоталамуса, гипофиза, поджелудочной железы, паращитовидных желез; 2. производные аминокислот: адреналин, норадреналин, тироксин, трийодтиронин; 3. стероиды: в их основе лежит структура циклопентанпергидрофенантрена, образуются из холестерина (половые гормоны, коры надпочечников). По механизму действия (по расположению рецепторов): 1. гормоны, действующие через внутриклеточный рецептор - липофильные гормоны - стероиды и тиреоидные гормоны; 2. гормоны, действующие через рецепторы, находящиеся на поверхности клетки - гидрофильные гормоны. Они действуют через внутриклеточный посредник - мессенджер. Гормон - первый посредник, а цАМФ, ионы Са2+, фосфатидилинозиды - вторые (чаще цАМФ, которая образуется из АДФ) посредники. [рис. цАМФ] Гидрофильные гормоны. Самый распространенный второй посредник - цАМФ-аденилатциклазная система. Она состоит из 2 частей: собственно аденилатциклазный компонент и протеинкиназный компонент. В плазматической мембране находятся рецепторы 2 типов: Rs - стимулирующий и Ri - ингибирующий. Внутри мембран находится G-белок (Gs, Gi) (читается джи-белок). G-белок распадается на  и  субъединицы, которые могут взаимодействовать между собой. -субъединица и ГТФ действуют на аденилатциклазу, превращая ее в активную форму. Эта активная аденилатциклаза находится на внутренней поверхности ЦПМ. Под влиянием АЦ АТФ превращается в цАМФ+ФФн. Разрушается цАМФ с помощью фермента - фосфодиэстеразы. После образования АЦ включается протеинциклазный компонент. цАМФ + протеинкиназа (фермент, вызывающий фосфорилирование других белков) активированая протеинкиназа. Протеинкиназа – тетрамер, содержащий 2 субъединицы R (регуляторная субъединица) и 2 субъединицы C (каталитическая субъединица). R2C2+4цАМФR2(4цАМФ) +2C (активная протеинкиназа). Активная протеинкиназа вызывает фосфорилирование белков. Белок+ АТФ(над стрелкой 2С) фосфопротеин (серин-фосфат, треонин-фосфат) +АДФ. В результате образования фосфорилированных белков могут быть: 1. усиленный распад гликогена: фосфорилаза Вфосфорилаза А; 2. изменение транспорта ионов; 3. изменение метаболизма углеводов, липидов; 4. регулируется генная транскрипция. Таким образом, фосфорилирование белков является важнейшим регуляторным механизмом.

55.Гормоны щитовидной железы. Биосинтез. Влияние на метаболизм. Механизм действия. Гипо- и гипертиреозы. Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержа-щий белок – тиреоглобулин. Гормоны щитовидной железы делятся на две группы: 1) йодированные – тироксин, трийодтиронин; 2) тиреокальцитонин (кальцитонин). Йодированные гормоны образуются в фолликулах железистой ткани. Основной активный гормон щитовидной железы – тироксин, соотношение тироксина и трийодтиронина составляет 4: 1. Оба гормона находятся в крови в неактивном состоянии, они связаны с белками глобули-новой фракции и альбумином плазмы крови. Роль йодированных гормонов: 1) влияние на функции ЦНС. Гипофункция ведет к резкому снижению двигательной возбудимости; 2) влияние на высшую нервную деятельность. Включаются в процесс выработки условных рефлексов; 3) влияние на рост и развитие; 4) влияние на обмен веществ; 5) влияние на вегетативную систему. Увеличивается число сердечных сокращений, дыхательных движений, повышается потоотделение; 6) влияние на свертывающую систему крови. Снижают способность крови к свертыванию, повышают ее фибринолитическую активность. Тиреокальцитоцин образуется парафолликуляр-ными клетками щитовидной железы, которые распо32б ложены вне железистых фолликул. Он принимает участие в регуляции кальциевого обмена, под его влиянием уровень Ca снижается. Тиреокальцито-цин понижает содержание фосфатов в периферической крови. Тиреокальцитоцин тормозит выделение ионов Ca из костной ткани и увеличивает его отложение в ней. Секреции тиреокальцитонина способствуют некоторые биологически активные вещества: гастрин, глюкагон, холецистокинин. Недостаточность выработки гормона (гипотериоз), появляющаяся в детском возрасте, ведет к развитию кретинизма (задерживаются рост, половое развитие, развитие психики, наблюдается нарушение пропорций тела). Недостаточность выработки гормона ведет к развитию микседемы, которая характеризуется резким расстройством процессов возбуждения и торможения в ЦНС, психической заторможенностью, снижением интеллекта, вялостью, сонливостью. При повышении активности щитовидной железы (гипертиреозе) возникает заболевание тиреотоксикоз. Характерные признаки: увеличение размеров щитовидной железы, числа сердечных сокращений, повышение обмена веществ. Наблюдаются повышенная возбудимость и раздражительность.

56. Гормоны стероидной природы. Классификация. Кортикостероиды: глюкокортикоиды и минералокортикоиды. Строение. Биологическая роль. Механизм действия. Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся аль-достерон и дезоксикортикостерон. Они усиливают обратное всасывание ионов Na в почечных канальцах и уменьшают обратное всасывание ионов K, что приводит к повышению ионов Na в крови и тканевой жидкости и увеличению в них осмотического давления. Это вызывает задержку воды в организме и повышение артериального давления. Минералокортикоиды способствуют проявлению воспалительных реакций за счет повышения проницаемости капилляров и серозных оболочек. Альдосте-рон обладает способностью увеличивать тонус гладких мышц сосудистой стенки, что приводит к повышению величины кровяного давления. При недостатке альдостерона развивается гипотония. Регуляция образования минералокортикоидов. Регуляция секрета и образования альдостерона осуществляется системой «ренин—ангиотензин». Ренин образуется в специальных клетках юкстагломерулярно-го аппарата афферентных артериол почки и выделяется в кровь и лимфу. Он катализирует превращение ан-гиотензиногена в ангиотензин I, который переходит под действием специального фермента в ангиотензин II. Ангиотензин II стимулирует образование альдостерона. Синтез минералокортикоидов контролируется концентрацией ионов Na и K в крови. Снижение образования минералокортикоидов происходит при недостаточном содержании ионов K. На синтез минералокортикоидов влияет количество тканевой жидкости и плазмы крови. Увеличение их объема приводит к торможению секреции альдостеронов, что обусловлено усиленным выделением ионов Na и связанной с ним воды. Гормон эпифиза гломерулотропин усиливает синтез альдостерона. Половые гормоны (андрогены, эстрогены, прогестерон) образуются в сетчатой зоне коры надпочечников. Они имеют большое значение в развитии половых органов в детском возрасте, когда внутрисекреторная функция половых желез незначительна. Оказывают анаболическое действие на белковый обмен: повышают синтез белка за счет увеличенного включения в его молекулу аминокислот. При гипофункции коры надпочечников возникает заболевание – бронзовая болезнь, или аддисонова болезнь. Признаками этого заболевания являются: бронзовая окраска кожи, особенно на руках шее, лице, повышенная утомляемость, потеря аппетита, появление тошноты и рвоты. Больной становится чувствителен к боли и холоду, более восприимчив к инфекции. При гиперфункции коры надпочечников (причиной которой чаще всего является опухоль) происходит увеличение образования гормонов, отмечается преобладание синтеза половых гормонов над другими, поэтому у больных начинают резко изменяться вторичные половые признаки. У женщин наблюдается проявление вторичных мужских половых признаков, у мужчин – женских.

57. Гормоны половых желез. Строение. Влияние на обмен веществ. Механизм действия. Половые гормоны делятся на мужские и женские. К мужским гормонам относятся андрогены, основным представителем которых является тестостерон, и незначительное количество эстрогенов, образующихся в результате метаболизма андрогенов. К женским гормонам относятся эстрогены, прогестины (эстрадиол, эстрон, прогестерон), а также андрогены в низкой концентрации. Эстрогены и прогестины Эстрогены и прогестины синтезируются в яичниках клетками желтого тела и в плаценте, андрогены - в яичке интерстициальными клетками. На ранних этапах эмбриогенеза (примерно в конце 3-го месяца) мужские половые железы становятся гормонально активными, т.е. синтезируют андрогены (в частности, тестостерон), под влиянием которых половые органы приобретают строение, характерное для мужского пола. Образование андрогенов прекращается после завершения эмбрионального развития плода мужского пола. В период полового созревания активность половых желез у мальчиков восстанавливается, а у девочек внутренняя их секреция возникает впервые. Под влиянием андрогенов у мальчиков и эстрогенов и гестагенов у девочек половые органы растут и созревают. Андрогены Андрогены нужны также для нормального созревания сперматозоонов, сохранения их двигательной активности, выявления и осуществления половых поведенческих реакций. Они в значительной степени влияют на обмен веществ, обладают анаболическим действием - усиливают синтез белка в различных тканях, особенно в мышцах; уменьшают содержание жира в органах, повышают основной обмен. Андрогены влияют на функциональное состояние ЦНС, высшую нервную деятельность. После кастрации происходят различные изменения в психической и эмоциональной сферах. Эстрогены Эстрогены стимулируют рост яйцевода, матки, влагалища, разрастание внутреннего слоя матки - эндометрия, способствуют развитию вторичных женских половых признаков и проявления половых рефлексов. Кроме того, эстрогены ускоряют и усиливают сокращение мышц матки, повышают чувствительность матки к гормону нейрогипофиза - окситоцина. Они стимулируют развитие и рост молочных желез. Физиологическое значение прогестерона заключается в том, что он обеспечивает нормальное течение беременности. Под его воздействием происходит разрастание слизистой оболочки (эндометрия) матки, это способствует имплантации оплодотворенной яйцеклетки в матке. Прогестерон создает благоприятные условия для развития вокруг имплантированной яйцеклетки децидуальной ткани, поддерживает нормальное течение беременности за счет торможения сокращений мышц беременной матки и уменьшает чувствительность матки к окситоцину. Кроме того, прогестерон тормозит созревание и овуляцию фолликулов вследствии угнетения создания гормона лютропина аденогипофизом.

58. Взаимосвязь обмена углеводов, липидов, аминокислот (схема). Гормональная регуляция. Роль инсулина, глюкагона, адреналина. СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ И УГЛЕВОДОВ. В процессе распада углеводов образуются кетокислоты, которые могут подвергаться аминированию или переаминированию и дать соответствующие a-аминокислоты - структурные элементы белков. Например, путем аминирования или переаминирования пировиноградная кислота, являющаяся продуктом распада углеводов, может превратиться в аминокислоту -аланин. Кроме того, пировиноградная кислота в результате дальнейших превращений дает щавелевоуксусную (СООН—СН2—СО—СООН) и a-кетоглютаровую (СООН—СН2—СН2—СО—СООН) кислоты, из которых путем реакции аминирования и переаминирования соответственно образуются аспарагиновая и глютаминовая аминокислоты. И наоборот, углеводы в животном организме могут синтезироваться из продуктов окисления белков. Углеводы образуются из тех аминокислот, которые при своем дезаминировании превращаются в кетокислоты.  СВЯЗЬ МЕЖДУ ОБМЕНОМ УГЛЕВОДОВ И ЖИРОВ Единство в обмене углеводов и жиров доказывается возникновением общих промежуточных продуктов распада. При распаде углеводов образуется пировиноградная кислота, а из нее -активная уксусная кислота -ацетил-КоА, который может быть использован в синтезе жирных кислот. Последние при своем распаде дают ацетил-КоА. Для синтеза нейтрального жира необходим кроме жирных кислот и глицерин. Глицерин также может синтезироваться из продуктов распада углеводов, а именно, из фосфоглицеринового альдегида и фосфодиоксиацетона. И наоборот, при распаде глицерина могут образовываться фосфотриозы. СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ И ЖИРОВ. Многие заменимые аминокислоты могут синтезироваться из промежуточных продуктов расщепления жиров. Возникающий при распаде жирных кислот цетил-КоА вступает в конденсацию с щавелевоуксусной кислотой и через цикл трикарбоновых кислот приводит к образованию a-кетоглютаровой кислоты. Кетоглютаровая кислота в результате аминирования или переаминирования переходит в глютаминовую. Глицерин, входящий в состав нейтральногo жира, окисляется в глицериновую кислоту и в дальнейшем превращается в пировиноградную, а последняя используется для синтеза заменимых аминокислот. Использование белков для синтеза жира осуществляется через образование ацетил-КоА. Далее ацетил-КоА может быть использован для синтеза жирных кислот. Глицерин образуется лишь за счет тех аминокислот, которые способны превращаться в пировиноградную кислоту. Действие инсулина на обменные процессы в организме многогранно. Исключительно важная роль принадлежит инсулину в регуляции обмена углеводов, что достигается разными путями: усилением транспорта глюкозы из крови в ткани за счет повышения проницаемости клеточных мембран, изменением активности гексокиназы и других ферментов углеводного обмена. Экзогенное введение инсулина нормальным животным вызывает усиление использования глюкозы печенью, мышцами, в результате чего уровень глюкозы в крови снижается  (гипогликемия). Большое значение имеет инсулин и в регуляции биосинтетических процессов. Он стимулирует биосинтез таких жизненно важных биополимфов, как нуклеиновые кислоты и белки. Адреналин влияет на многие обменные процессы. Он повышает концентрации глюкозы и молочной кислоты в крови (гл. 6). Активация а2-адреноре-цепторов приводит к торможению выработки инсулина, а β2-адренорецепторов — наоборот; при действии адреналина преобладает тормозный компонент. Действуя на P-адренорецепторы α-клеток островков поджелудочной железы, адреналин стимулирует секрецию глюкагона. Он подавляет также захват глюкозы тканями, по меньшей мере частично — за счет торможения выработки инсулина, но также, возможно, за счет прямого действия на скелетные мышцы. Глюкозурию адреналин вызывает редко. В большинстве тканей и у большинства видов животных адреналин стимулирует глюконеогенез путем активации β-адренорецепторов (гл. 6). Действуя на бета-адренорецепторы липоцитов, адреналин активирует гормон-чувствительную липазу, что приводит к распаду триглицеридов до глицерина и свободных жирных кислот и повышению уровня последних в крови. Под действием адреналина повышается основной обмен (при использовании обычных терапевтических доз потребление кислорода возрастает на 20—30%). Это обусловлено главным образом усилением распада бурой жировой ткани.

59.  Общаяя характеристика витаминов. Классификация. Участие в обмене. Связь с ферментами. Витамины – это необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения, синтез которых в организме ограничен или отсутствует. Отличительные признаки витаминов: 1) витамины не выполняют пластических функций; 2) витамины не играют энергетической роли (т.е. не используются как источник энергии); 3) витамины не синтезируются в организме или синтезируются в недостаточных количествах; 4) дефицит витаминов вызывает специфические нарушения обмена веществ с характерными клиническими проявлениями; 5) выполняют специфические функции, которые невозможно заменить другими органическими соединениями; 6) витамины необходимы в миллиграммах или микрограммах в сутки (!). Классификация витаминов Принята классификация по растворимости: 1) жирорастворимые (A, D, E, K); 2) водорастворимые (все остальные: В_, С, Р, Н); 3) витаминоподобные вещества – синтезируются в организме, но в недостаточном количестве (парааминобензойная к-та, коэнзим Q, холин, инозит, пангамовая к-та). Номенклатура витаминов представлена химическим названием и буквенным обозначением. Напр., витамин А – ретинол, витамин РР – никотинамид или никотиновая кислота, витамин В6 – пиридоксин, пиридоксаль или пиридоксамин. Также существует клиническое название витамина, которое состоит из названия патологического проявления недостатка витамина с приставкой анти- . (напр., витамин А – антиксерофтальмический витамин, витамин D – антирахитический витамин). Жирорастворимые витамины могут откладываться в печени в виде резервов (A, D, K), витамин Е может накапливаться в жировой ткани. Так как эти витамины нерастворимы в воде, то они не могут свободно проникать в кровь и выводиться с мочой. При избыточном поступлении этих витаминов могут развиваться токсические эффекты (в основном, витамина А и D). Водорастворимые витамины выводятся с мочой, поэтому их избытка не наблюдается. Возможен небольшой резерв фолиевой к-ты и витамина В12 в печени. Токсические эффекты не наблюдаются. Участие витаминов в обмене веществ Витамины – катализаторы обменных процессов. Многие водорастворимые и часть жирорастворимых витаминов входят в состав ферментативных систем. Многие витамины в нашем организме преобразуются в коферменты. Кофермент – это вещество, которое связывается с ферментом для его большей активации. Ферментные комплексы ускоряют самые разнообразные химические реакции в организме. С их помощью регулируется обмен веществ, запускаются те или иные процессы, расщепляются одни вещества и образуются другие. Коферменты очень эффективны в действии. Нужно совсем небольшое количество этих веществ, для проявления их каталитических свойств. Этим объясняется тот факт, что для нормальной работы организма нам нужно совсем небольшое количество витаминов.

60. Витамин В1. Структура. Роль в обмене веществ. Гиповитаминоз Витамин В1 Тиамин, антиневритный витамин.

Тиамин устойчив в кислой среде (до 140ºС), а в щелочной среде быстро разрушается. Роль витамина В1 в обмене веществ 1. из него образуется ТПФ (тиаминпирофосфат) – кофермента декарбоксилаз кетокислот (пируват-ДК-комплекс, альфа-КГ-ДК) и транскетолазы; 2. участвует в передаче нервного импульса; 3. является коферментом транскетолазы. Гиповитаминоз В1: накопление ПВК и альфа-КГ в крови из-за нарушения их превращений, поражение нервной ткани из-за недостатка глюкозы. Авитаминоз В1 – болезнь бери-бери: полиневриты, отеки, сердечно-сосудистая недостаточность (иногда до некрозов), нарушения секреции и моторики ЖКТ (атония кишечника). Чаще развивается при хроническом алкоголизме, когда витамин В1 не всасывается. Суточная потребность витамина В1 2-3 мг. Потребность возрастает при углеводной пище (0,5 мг витамина на каждые 1000 ккал). Источники тиамина: дрожжи, хлеб грубого помола, каши, крупы (овсяная, гречневая, фасоль).

61. Витамин В2. Строение, участие в обмене. Связь с ферментами. Гиповитаминоз Витамин В2 Рибофлавин

Устойчив в кислой среде, но разрушается в нейтральной и щелочной. Легко окисляется по двойной связи, что позволяет ему участвовать в о/в реакциях в виде коферментов (ФМН, ФАД): - окисляет восстановленную форму НАД·Н (компонент НАД·Н-дегидрогеназы в дыхательной цепи), - окисляет жирные к-ты, янтарную к-ту, аминокислоты. Авитаминоз В2: поражение эпителия слизистых, кожи, глаз; сухость слизистых губ, полости рта, трещины губ; дерматиты, сухость конъюнктивы, переходящая в конъюнктивиты, кератиты, васкуляризация глазных яблок. Суточная потребность 2-4 мг. Источники: дрожжи, печень; хлеб грубого помола, соя, яйца, молоко. Гиповитаминоз В2 (рибофлавина) вызывает структурные и функциональные изменения в коре надпочечников, нарушает процессы гемопоэза, обмена железа, глюконеогенеза, превращения фенилаланина в катехоламины. Дефицит рибофлавина неблагоприятно отражается на состоянии естественного иммунитета. Его недостаток может привести к невынашиванию беременности.. Наиболее характерными клиническими признаками являются: хейлит, ангулярный стоматит, глоссит, изменения конъюнктивы и роговицы, нарушение зрения. Дерматиты при В2-витаминной недостаточности имеют ряд особенностей: на коже лица, веках, ушных раковинах, крыльях носа и носогубных складках развивается шелушение с уплотнением век и утолщением кожи. При дефиците рибофлавина отмечают изменения ЦНС: вначале у больного преобладают процессы возбуждения, а в последующем при углублении дефицита - торможения. Больные жалуются на парестезии, мышечную слабость, атаксию, у маленьких детей могут наблюдаться судороги.

62. Витамин РР. Строение, участие в обмене. Взаимосвязь с ферментами. Гиповитаминоз Витамин РР Антипеллагрический витамин. Витамеры: никотиновая к-та, никотинамид, ниацин.

Устойчив при кипячении. Роль витамина РР в обмене веществ Используется для синтеза НАД и НАДФ – коферментов дегидрогеназ. Гиповитаминоз РР: усталость, слабость. Более выраженный – пеллагра: диарея, дерматиты, деменция (слабоумие). Суточная потребность витамина РР 20-25 мг. Источники: дрожжи, печень, грибы, соя, бобы, мясо, мука пшеничная грубого помола. Может синтезироваться в организме из аминокислоты триптофана при участии витамина В6. Поэтому гиповитаминоз РР бывает при белковом голодании и при гиповитаминозе В6. Ниацин входит в состав ферментов, участвующих в клеточном дыхании и обмене белков, регулирующих высшую нервную деятельность и функции органов пищеварения. Используется для профилактики и лечения пеллагры, заболеваний желудочно-кишечного тракта, вяло заживающих ран и язв, атеросклероза.

63. Витамин В6. Строение. Участие в обмене. Гиповитаминоз Витамин В6. Антидерматитный витамин. Пиридоксин → пиридоксаль → пиридоксамин [нарисовать формулы].

(все три эти соединения обладают витаминным действием) Роль витамина В6 в обмене веществ. 1. он необходим для образования ПФ (пиридоксальфосфата) – кофермента амино-ТФ, декарбоксилаз АК, дезаминаз АК; 2. необходим для превращения триптофана в витамин РР; 3. нужен для превращения дельта-аминолевулиновой кислоты в гем. {Т.е., вит.В6 нужен для обмена аминокислот}. Гиповитаминоз В6: анемия из-за нарушения обмена АК, плюс дерматиты, стоматиты, глосситы, конъюнктивиты. Суточная потребность в витамине В6 2-3 мг. Источники: печень, дрожжи, хлеб грубого помола, горох. Также он синтезируется микрофлорой кишечника. Гиповитаминоз возможен при длительном употреблении антибиотиков, особенно, противотуберкулезных препаратов.

64. Антианемические витамины (В12, В9). Особенности структуры, роль в метаболизме, гиповитаминозы. Витамин В9 (фолиевая кислота). Фолиевая кислота Антианемический витамин. Роль фолиевой кислоты в обмене веществ. Участвует в транспорте одноуглеродных фрагментов (-СООН, -СН3, СН=О): превращение урацила в тимин, этаноламина в холин; синтез АК метионина, серина, пуриновых оснований. {Т.е., фолиевая кислота нужна для обмена белков и нуклеиновых кислот}. Гиповитаминоз фолиевой кислоты: анемия, затем диарея. Суточная потребность фолиевой к-ты 0,2 мг. Источники: зеленые растения (шпинат, капуста), фасоль, печень, молоко, яйца; плюс синтезируется микрофлорой кишечника. Причины недостатка фолиевой к-ты: - использование антибиотиков; - заболевания ЖКТ (кишечника); - недостаточность белкового питания. Особенно недостаток фолиевой к-ты проявляется при беременности (у 58% беременных), им нужно до 0,6 мг/сут. Считается, что 98% недоношенных и имбицильных детей обусловлено дефицитом фолиевой кислоты. Витамин В12 Кобаламин. Антианемический витамин. Имеет красный цвет. На свету разлагается. Роль кобаламина в обмене веществ - транспорт метильных групп; - участвует в транспорте водорода; - превращение рибозы в дезоксирибозу; - участвует в синтезе метионина. {Т.е., кобаламин нужен для обмена белков и нуклеиновых кислот.} Недостаток кобаламина: анемия, поражение нервной системы, снижение кислотности желудочного сока. Суточная потребность в кобаламине 0,003 мг. Источники: печень, рыба, яйца, молоко, + синтезируется микрофлорой. (в дрожжах – нет). Недостаток кобаламина может возникать при заболеваниях желудка, в котором вырабатывается внутренний фактор Касла (транскоррин), необходимый для всасывания витамина В12.

65. Витамин С. Структура, роль в обмене. Участие в Реминеральзации и образовании зуба. Авитаминоз. Витамин С Аскорбиновая кислота, антискорбутный витамин (скорбут = цинга). Является лактоном. Легко окисляется:

О=С─┐ О=С─┐

| │ | │

НО-С │ -2Н О=С │

║ О ◄═══► | О

НО-С │ +2Н О=С │

| │ | │

НС─┘ НС─┘

| |

НО-СН НО-СН

| |

Н2С-ОН Н2С-ОН

аскорбат дегидроаскорбат

Енольные гидроксилы неустойчивы, особенно в присутствии кислорода. В кислой среде витамин С сохраняется лучше. Роль витамина С в обмене веществ. 1. участвует в реакциях гидроксилирования (ЛИЗ→ОЛИ, ПРО→ОПР), что требуется для "сшивок" молекул коллагена в соединительной ткани; 2. участвует в триптофана и диоксиметила с образованием нейромедиаторов (норадреналин и др.); 3. необходим для синтеза кортикостероидов; 4. необходим для образования нейромедиаторов. Гиповитаминоз С проявляется поражением соединительной ткани – повышенная хрупкость сосудов, пипехии (точечные кровоизлияния на коже), кровоточивость десен. Авитаминоз С – цинга (скорбут): кровоизлияния во внутренние органы, более выраженные повреждения соединительной ткани. Суточная потребность витамина С 100-150 мг. Она возрастает при инфекционных заболеваниях, стрессовых состояниях, лактации, беременности – до 300 мг/сут. Источники витамина С: овощи, фрукты, зеленые растения; главные – черная смородина, шиповник, грецкий орех, цитрусовые. В России основным источником его является картофель (10 мг/100 г) и квашенная капуста. Причины гиповитаминоза С: 1. витамин С неустойчив; 2. он необходим в относительно больших количествах; 3. в организме отсутствуют запасы витамина С. обеспечивает синтез коллагена; участвует в формировании и поддержании структуры и функции хрящей, костей, зубов и десен;

66. Жирорастворимые витамины. Общая характеристика группы. Витамин А.Провитамин. Строение.Биологическая роль. Участие в образовании родопсина. Авитаминоз. Жирорастворимые витамины – это витамины, растворимые в жирах. Свойства жирорастворимых витаминов. Рассмотрим 6 важных свойств жирорастворимых витаминов: 1. Растворяются в жирах. 2. Входят в состав клеточных мембран. 3. Имеют способность накапливаться в подкожно-жировой клетчатке, в жировых капсулах внутренних органов. Благодаря этому в организме создается достаточно «прочный» запас жирорастворимых витаминов. Их избыток хранится в печени и при необходимости выводится из нее с мочой. 4. Основным источником содержания является пища животного происхождения (мясо, рыба, молоко, яйца, сыр и так далее), а также растительные продукты. Витамин К образуется кишечной микрофлорой организма. 5. Недостаток жирорастворимых витаминов встречается крайне редко, так как из организма данный тип витаминов выводится медленно. 6. Передозировка жирорастворимыми витаминами или однократное применение сверхвысокой дозы могут привести к тяжелому расстройству организма. Особенно токсична передозировка витаминами А и D. Жирорастворимые витамины и их функции. Выделяют 5 функций жирорастворимых витаминов: 1. Биологическая роль жирорастворимых витаминов заключается в поддержании оптимального состояния клеточных мембран разного типа. 2. Являются помощниками организма в усвоении продуктов питания. Особенно обеспечивают наиболее полное расщепление пищевых жиров. 3. Не образуют коферменты (за исключением витамина К). 4. Наряду со стероидными гормонами выполнят функцию индукторов синтеза белка. Особенно высокой гормональной активностью обладают активные формы витамина D. 5. Некоторые из них (такие как витамины А и Е) являются витаминами-антиоксидантами и защищают наш организм от опаснейших «разрушителей» – свободных радикалов. Витамин А. Витамеры: А1 – ретинол и А2 – ретиналь. Клиническое название: антиксерофтальмический витамин. По химической природе: циклический непредельный одноатомный спирт на основе кольца -ониона.

Может разрушаться кислородом, т.е. является антиоксидантом. Роль витамина А в метаболизме: 1. Участвует в росте и дифференцировке клеток эмбриона, развивающегося организма. Участвует в делении и дифференцировке быстро пролиферирующих тканей (хрящевые, костные, эпителиальные ткани), т.к. витамин А может инициировать репликацию и участвует в образовании хондроитинсульфата. 2. Участвует в фотохимическом процессе зрения. В состав зрительного пигмента родопсина входит 11-цис-ретиналь, который при освещении переходит в 11-транс-ретиналь, активирующий фосфодиэстеразу, которая расщепляет цГМФ, в результате чего ионные каналы мембраны закрываются, возникает гиперполяризация мембраны и генерируется нервный импульс. При этом родопсин разлагается на белок опсин и 11-транс-ретиналь. В темноте наблюдается регенерация родопсина: транс-ретиналь (алкоголь-ДГ, НАД·Н2 → НАД) транс-ретинол (изомераза) цис-ретинол (алкоголь-ДГ, НАД·Н2 → НАД) цис-ретиналь (+опсин) родопсин. Авитаминоз: в связи с тем, что витамин А играет важную роль в работе органов зрения, его недостаток сразу же сказывается на работе глаз. У Вас может появиться так называемая «куриная слепота», то есть в сумерках Вы будете видеть значительно хуже, может появиться сухость слизистой оболочки, которая проявляется чувством дискомфорта и желанием тереть глаза, могут появиться даже небольшие язвочки на слизистой оболочке глаз. Состояние кожи также зависит от количества витамина А в рационе. Поэтому при его недостатке кожа становится сухой, на поверхности ее появляется шелушение, могут воспалиться волосяные луковицы, появиться мелкие нарывчики. Если витамина А не хватает ребенку, то он будет хуже развиваться, медленнее набирать вес и рост, могут появиться нарушения в работе нервной системы. Недостаток витамина А также влияет на работу иммунитета, поэтому Вы начнете чаще болеть.

68. Жирорастворимые витамины Е и К. Их биологическая функция. Витамин Е. Устар.: антистерильный витамин, антиоксидантный энзим. В химическом плане это альфа-, бета-, гамма- и дельта-токоферолы, но преобладающим является альфа-токоферол. Витамин Е устойчив к нагреванию. Роль витамина Е в обмене веществ 1. регулирует интенсивность свободно-радикальных реакций. Препятствует перекисному окислению липидов биомембран; 2. повышает активность витамина А. Гиповитаминоз Е специфической картины не имеет. Наиболее специфичны гемолитическая анемия недоношенных и патологии мембран. Суточная потребность витамина Е 20-25 мг. Источники витамина Е: растительные масла (!), а также печень, желток яиц, проросшие зерна; масло облепихи. Витамин К. Антигеморрагический витамин. Витамеры: К1 – филлохинон и К2 – менахинон. Роль витамина К в обмене веществ. Это кофактор карбоксилирования глутаминовой кислоты (ГЛУ) в белке крови протромбине для его превращения в тромбин. протромбин → тромбин [карбоксилирование гамма-углеродного звена остатка глутамата]. Антагонист витамина К – варфарин (крысиный яд), он близок по структуре к витамину К, является антикоагулянтом. Витамин К поступает в организм с зелеными растениями (шпинат, крапива), жирами, а также синтезируется микрофлорой кишечника. Гиповитаминоз К проявляется геморрагиями. Авитаминоз К чаще наблюдается при нарушении всасывания его в кишечнике. {водорастворимая форма витамина К - викасол}.

69. Роль витаминов А,С,Д в процессе минерализации зуба

Роль витамина А особенно значительна в период гистогенеза зубных тканей, учитывая его специфическое действие на эмалеобразующий эпителий развивающегося зуба и его пульпу. Роль витамина А остается важной и после окончания формирования зубов, так как этот витамин участвует в окислительно-восстановительных процессах и регулирует не только минеральный, но и жировой и белковый обмены. Суточная доза витамина А для человека независимо от возраста в пределах 1 мг. Целесообразно его назначать одновременно с каротином, доза которого в 2 раза превышает дозу витамина А (2 мг в сутки). Помимо сливочного масла, молока и сметаны, витамин А содержится в рыбных продуктах (треска, окунь). Выпускается он и в виде драже и масляного концентрата. Однако естественные витамины усваиваются организмом значительно лучше синтетических. Витамин D влияет на процесс кальцификации (минерализации) костей, а также эмали и дентина. В связи с этим несомненно его большое значение в минеральном обмене организма особенно в период закладки, формирования и минерализации зубов молочного и постоянного прикуса. Дефицит витамина D оказывает неблагоприятное влияние на ткани зуба, обусловливая структурные их нарушения в виде гипоплазии эмали при одновременном недостатке в пище солей кальция и фосфора. Большинством авторов витамин D не расценивается как непосредственный противокариозный фактор. При нормальном питании нет необходимости в дополнительном введении витамина D в пищевой рацион взрослого человека. Детям, беременным женщинам и кормящим матерям необходимо назначать этот витамин дополнительно в пределах 300—700 ME в сутки. Индивидуальная доза витамина D определяется участковым педиатром, врачом детского учреждения (ясли, сад) или женской консультации с учетом возраста и уровня ультрафиолетового облучения.

БИОХИМИЯ ПЕЧЕНИ

70.Функции печени. Роль печени в обезвреживании токсических веществ. Роль цитохрома Р450.

Функции печени:

депонирование, в печени депонируется гликоген, жирорастворимые витамины (А, D, Е, К). Сосудистая система печени способна в довольно больших количествах депонировать кровь; 

участие во всех видах обмена веществ: белковом, липидном (в том числе в обмене холестерина), углеводном, пигментном, минеральном и др. 

дезинтоксикационная функция; 

барьерно-защитная функция; 

синтез белков крови: фибриногена, протромбина, альбуминов; 

участие в регуляции свертывания крови путем образования белков - фибриногена и протромбина; 

секреторная функция - образование желчи; 

гомеостатическая функция, печень участвует в регуляции метаболического, антигенного и температурного гомеостаза организма; 

кроветворная функция; 

эндокринная функция.

Механизм обезвреживания токсических веществ в печени может быть различным: окисление, восстановление, метилирование, ацетилирование, коньюгация с различными веществами.

Широко представлены защитные синтезы, например, синтез мочевины, в результате которого обезвреживается аммиак. Дезаминирование аминокислот сопровождается образованием аммиака, являющегося сильным клеточным ядом. Обезвреживание его происходит путем синтеза мочевины. Этот процесс происходит в печени, эта одна из важнейших ее функций.

Кроме дезаминирования и переаминирования некоторые АК подвергаются в печени особым превращениям, свойственным только данной АК. Нарушение функции печени в этих случаях существенно меняет путь распада АК.

Токсические вещества из кишечника (продукты распада – фенол, крезол, скатол, индол) в печени подвергаются обезвреживанию. Механизм заключается в образовании парных соединений с серной и глюкуроновой кислотами. Примером обезвреживания токсических продуктов путем их восстановления является превращение хлоралгидрата в трихлорэтиловый спирт. Ароматические углеводы обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.

Цитохром Р450 (CYP450) — большая группа ферментов, отвечающая за метаболизм чужеродных органических соединений и лекарственных препаратов. Ферменты семейства цитохрома Р450 осуществляют окислительную биотрансформацию лекарственных препаратов и ряда других эндогенных биоорганических веществ и, таким образом, выполняющих дезинтоксикационную функцию. С участием цитохромов происходит метаболизм многих классов лекарственных средств, таких как ингибиторы протонной помпы, антигистаминные препараты, ингибиторы ретровирусной протеазы, бензодиазепины, блокаторы кальциевых каналов и другие.  Цитохром Р450 представляет комплекс белка с ковалентно связанным гемом (металлопротеином), обеспечивающим присоединение кислорода. Гем, в свою очередь, является комплексом протопорфирина IX и двувалентного атома железа. Число 450 обозначает, что восстановленный гем, связанный с СО, отличается максимумом поглощения света при длине волны 450 нм. 

71.Функции печени. Участие в обмене углеводов. Цикл Кори. Аланиновый цикл.

Начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу.

Итак печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма.

Глюкозо-аланиновый цикл . Этот цикл выполняет две функции . 1 переносит аминогруппы из скелетных мышц в печень , где они превращаются в мочевину , и 2 обеспечивает работающие мышцы глюкозой , поступающей с кровью из печени , где для ее образования используется углеродный скелет аланина . Углеводы, попадая в кровеносную систему, определенная их часть в печени (в гепатоцитах) превращается в гликоген, который при голодании полностью расходуются организмом в течение 24 часов. Определенная часть гликогена присоединяется с альбумином, и они составляют 10-20% из общего количество гликогена и они сохраняются печени дольше, чем гликоген. Гликоген печени составляет 5-7% и является резервом, который расходуется организмом при уменьшении постоянного количества глюкозы в сыворотке крови. При синтезе и усвоении гликогена в печени участвуют гормоны — адреналин, глюкагон и катионы. Адреналин участвует в распаде гликогена в печени и других тканях. А инсулин участвует в синтезе гликогена печени, тормозит его распад.

Гликоген в печени образуется не только из глюкозы, но из других источников — фруктозы, молочной кислоты, пировиноградной кислоты и др. В печени гликоген синтезируется из фруктозы активнее, чем из глюкозы. В печеночных клетках из глюкозы синтезируется глюкуроновая кислота, которая участвует в обезвреживании токсических веществ, попадающих из кишечника через воротную вену (фенол, индол, скатол и др.). Также глюкуроновая кислота, присоединяясь при помощи фермента глюкуронилтрансферазы, образует водорастворимое соединения в виде билирубина диглюкуронида и билирубин моноглюкуронида. Таким образом, билирубин лишается от токсических свойств и выделяется желчью в кишечник. При уменьшении образования глюкуроновой кислоты, страдает антитоксическая функция печени.

Печень является основным депо для гликогена и при необходимости для организма глюкозы, снабжается за счет гликогена печени. В печеночных клетках количество калия по сравнению с плазмой крови 10 раз больше. Ионы калия участвуют в клетках при синтезе гликогена, а ионы натрия участвуют в гликогенолизе, т.е. в реакции распада гликогена. Количество калия и натрия в клетках находится под регуляторным действием гормонов надпочечников — минералокортикоидов.

72.Роль печени в обмене липидов. Транспортные формы липидов.

Печень принимает непосредственное активное участие в обмене жиров, поэтому нарушения липидного обмена являются одним из критериев поражения этого органа.

В печени происходит синтез фосфолипидов и нейтрального жира, она регулирует процессы образования, эстерификации, разложения и выделения холестерина. Фосфолипиды, холестерол, нейтральные жиры входят в структуру печеночных клеток, которые играют выступают в роли жирового депо. В качестве основных критериев участия печени в жировом обмене используются показатели содержания в сыворотке крови общих липидов, липо-протеидов, фосфолипидов, холестерина и эфиров холестерина.

Гиперлипидемия отмечается при остром, затяжном и хроническом вирусном гепатите, гиполипидемия - при остром некрозе печени. Выраженная гиперлипидемия имеет место при механической желтухе (из-за прекращения поступления желчи в кишечник в кровь всасывается комплекс липидов, который слабо утилизируется и долго сохраняется в крови).

Триглицериды - важнейший подкласс липидов, выполняющий роль резервного соединения для жирных кислот, обеспечивающий энергетические затраты организма; они являются пластическим материалом.

При остром вирусном гепатите возможно повышение или понижение уровня триглицеридов. Для портального и постнекротического цирроза печени характерно снижение уровня триглицеридов, для острой жировой дистрофии печени - его повышение.

Холестерин в сыворотке крови находится в свободной и связанной с жирными кислотами форме. Повышенное содержание холестерина в сьшоротке крови регистрируется в начальной фазе острого вирусного гепатита, при врожденной атрезии желчных путей, неосложненных формах застойных желтух, а также в период разгара паренхиматозного гепатита средней тяжести, при постнекротическом циррозе печени (особенно в случае развития печеночной недостаточности).

Гипохолестеринемия отмечается при тяжелых паренхиматозных поражениях печени, печеночной коме (при этом обычно пропорционально уменьшается уровень эфиросвязанного холестерина), особенно резкая гиперхолестеринемия наблюдается при острой атрофии печени.

73.Роль печени в обмене белков и аминокислот. Обезвреживание аммиака в орнитиновом цикле.

Без участия печени в метаболизме белка организм может обходиться не более нескольких дней, затем наступает летальный исход. К наиболее важным функциям печени в обмене белка относят следующие. 1. Дезаминирование аминокислот. 2. Образование мочевины и извлечение аммиака из жидких сред организма. 3. Образование белков плазмы крови. 4. Взаимное превращение различных аминокислот и синтез из аминокислот других соединений. Предварительное дезаминирование аминокислот необходимо для их использования при получении энергии и преобразования в углеводы и жиры. В небольших количествах дезаминирование осуществляется и в других тканях организма, особенно в почках, но по значимости эти процессы несопоставимы с дезаминированием аминокислот в печени.

Образование мочевины в печени помогает извлечению аммиака из жидких сред организма. Большое количество аммиака образуется в процессе дезаминирования аминокислот, дополнительное его количество постоянно образуется бактериями в кишечнике и абсорбируется в кровь. В связи с этим если в печени мочевина не образуется, то концентрация аммиака в плазме крови начинает быстро нарастать, что приводит к печеночной коме и смерти. Даже в случае резкого снижения кровотока через печень, что иногда происходит вследствие формирования шунта между воротной и полой венами, содержание аммиака в крови резко повышается с созданием условий для токсикоза. Все основные белки плазмы крови, за исключением некоторых гамма-глобулинов, образуются клетками печени. Их количество составляет приблизительно 90% всех белков плазмы. Остальные гамма-глобулины представляют собой антитела, образуемые главным образом плазматическими клетками лимфоидной ткани.

Максимальная скорость образования белков печенью составляет 15-50 г/сут, поэтому если организм теряет около половины белков плазмы, их количество может быть восстановлено в течение 1-2 нед. Следует учитывать, что истощение белков плазмы крови является причиной быстрого наступления митотических делений гепатоцитов и увеличения размеров печени. Этот эффект сочетается с выбросом белков плазмы крови печенью, который продолжается до тех пор, пока концентрация белков в крови не вернется к нормальным значениям. При хронических заболеваниях печени (в том числе и циррозе) уровень белков в крови, особенно альбуминов, может падать до очень низких значений, что является причиной появления генерализованных отеков и асцита. К числу наиболее важных функций печени относится ее способность синтезировать некоторые аминокислоты наряду с химическими соединениями, в состав которых включены аминокислоты. Например, в печени синтезируются так называемые заменимые аминокислоты. В процессе такого синтеза принимают участие кетокислоты, имеющие сходную химическую структуру с аминокислотами (исключая кислород в кето-положении). Аминорадикалы проходят несколько стадий трансаминирования, перемещаясь от имеющихся в надичии аминокислот в кетокислоты на место кислорода в кето-положении.

Обезвреживание аммиака 1.в митохондриях орнитинкарбамоилтрансфераза переносит карбамоильную группу карбомоилфосфата на орнитин-цитруллин 2.с затратой АТФ аргинитосукцинатсинтетаза связ.цитруллин с аспартатом-аргининосукцинат 3.аргининосукциназа расщепляет на аргинин и фумарат 4.аргиназа гидролизует аргинин на орнитин и мочевину 5.орнитин связ.с новой молекулой карбамоилфосфата и новый цикл

БИОХИМИЯ ПОЧЕК

74.Роль водно-солевого обмена в функционировании организма. Регуляция водно-солевого обмена (ренин-ангиотензиновая система, роль альдостерона и вазопрессина).

Водно-солевым обменом называют совокупность процессов поступ­ления воды и электролитов в организм, распределения их во внут­ренней среде и выделения из организма.У здорового человека поддерживается равенство объемов выделяющейся из организма и поступившей в него за сутки воды, что называют водным балансом организма. Можно рассматривать также и баланс электролитов — натрия, калия, кальция и т.п.

Водно солевой обмен

Водный баланс организма тесно связан с обменом электролитов. Суммарная концентрация минеральных и других ионов создает оп­ределенную величину осмотического давления. Концентрация от­дельных минеральных ионов определяет функциональное состояние возбудимых и невозбудимых тканей, а также состояние проница­емости биологических мембран, — поэтому принято говорить о водно-электролитном (или солевом)обмене.

Водно электролитный обмен

Поскольку синтез ми­неральных ионов в организме не осуществляется, они должны по­ступать в организм с пищей и питьем. Для поддержания электро­литного баланса и, соответственно, жизнедеятельности, организм в сутки должен получать примерно 130 ммоль натрия и хлора, 75 ммоль калия, 26 ммоль фосфора, 20 ммоль кальция и других эле­ментов.

Данные о физиологической роли, суточной потребности и пище­вых источниках минеральных ионов приведены в таблице 12.3. В этой же таблице представлены сведения о микроэлементах. К ним относят ту часть минеральных ионов, которые выполняют в орга­низме ряд важных функций, но суточная потребность в этих эле­ментах невелика.

Роль электролитов в жизнедеятельности организма

Для гомеостаза электролитов необходимо взаимодействие несколь­ких процессов: поступление в организм, перераспределение и депо­нирование в клетках и их микроокружении, выделение из организ­ма.

Поступление в организм зависит от состава и свойств пищевых продуктов и воды, особенностей их всасывания в желудочно-ки­шечном тракте и состояния энтерального барьера. Однако, несмотря на широкие колебания количества и состава пищевых веществ и воды, водно-солевой баланс в здоровом организме неуклонно под­держивается за счет изменений экскреции с помощью органов вы­деления. Основную роль в этом гомеостатическом регулировании выполняют почки.

Регуляция водно-солевого обмена

Регуляция водно-солевого обмена, как и большинство физиологичес­ких регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппара­тов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава.

В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Следствием центрального анализа является изменение питьевого и пищевого по­ведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эффе­рентные звенья регуляции. Последние представлены нервными и, в большей мере,  гормональными влияниями.

Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена

Главным механизмом регуляции синтеза и секреции альдостерона служит система ренинангиотензин.

Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль конечной части афферентных (приносящих) артериол, входящих в почечные клубочки (рис. 11-34).

Юкстагломерулярные клетки особенно чувствительны к снижению перфузионного давления в почках. Уменьшение АД (кровотечение, потеря жидкости, снижение концентрации NaCl) сопровождается падением перфузионного давления в приносящих артериолах клубочка и соответствующей стимуляцией высвобождения ренина.

Субстратом для ренина служит ангиотензиноген. Ангиотензиноген - α2-глобулин, содержащий более чем 400 аминокислотных остатков. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена и отщепляет N-концевой декапептид (ангиотензин I), не имеющий биологической активности.

Под действием карбоксидипептидилпептидазы, или антиотензин-превращающего фермента (АПФ), выявленного в эндотелиальных клетках, лёгких и плазме крови, с С-конца ангиотензина I удаляются 2 аминокислоты и образуется октапептид - ангиотензин II.

Ангиотензин II, связываясь со специфическими рецепторами, локализованными на поверхности клеток клубочковой зоны коры надпочечников и ГМК, вызывает изменение внутриклеточной концентрации диацилглицерола и инозитолтрифосфата. Инозитолтрифосфат стимулирует высвобождение из ЭР ионов кальция, совместно с которым активирует протеинкиназу С, опосредуя тем самым специфический биологический ответ клетки на действие ангиотензина П.

При участии аминопептидаз ангиотензин II превращается в ангиотензин III - гептапептид, проявляющий активность ангиотензина II. Однако концентрация гептапептида в плазме крови в 4 раза меньше концентрации октапептида, и поэтому большинство эффектов являются результатом действия ангиотензина П. Дальнейшее расщепление ангиотензина II и ангиотензина III протекает при участии специфических протеаз (ангиотензиназ).

Ангиотензин II оказывает стимулирующее действие на продукцию и секрецию альдостерона клетками клубочковой зоны коры надпочечников, который, в свою очередь, вызывает задержку ионов натрия и воды, в результате чего объём жидкости в организме восстанавливается. Кроме этого, ангиотензин II, присутствуя в крови в высоких концентрациях, оказывает мощное сосудосуживающее действие и тем самым повышает АД.

Биохимия ротовой полости

75.Особенности биохимического состава дентина. Изменение при патологии

Дентин - это бесклеточная ткань, составляющая основную массу зуба. В области коронки зуба он покрыт эмалью, а в области корня - цементом. Дентин является второй по плотности, твёрдости и степени минерализованности тканью после эмали. По своим свойствам и структуре дентин напоминает грубоволокнистую костную ткань, но отличается от неё большей твёрдостью, отсутствием клеток и кровеносных сосудов. Содержание воды в нём составляет ~ 10%, минеральных веществ ~ 70%, органических - ~ 20%. Дентинообразующие клетки (одонтобласты) находятся на границе дентина и пульпы и не погружаются в матрикс, как остеобласты и цементобласты. В течение всего периода функционирования зуба при наличии жизнеспособной пульпы из её паренхиматозных клеток образуются новые популяции одонтобластов, формирующие дентин. В радиальном направлении дентин пронизан множеством тонких дентиновых канальцев. Это полые образования, занимающие ~ 10 % общего объёма дентина. Ближе к пульпе их объём составляет около 80 %, а ближе к эмали - около 4 %. Стенки дентиновых канальцев состоят из перитубулярого дентина, в котором коллагеновые волокна имеют циркулярное направление и богаче минерализованы по сравнению с межтубулярным дентином. Общее количество канальцев и их диаметр также уменьшаются от центра к периферии. В дентиновых трубочках расположены отростки одонтобластов и дентиновая жидкость. Раздражения отростков одонтобластов передаются на нервные окончания пульпы, которая получает информацию о состоянии эмали и дентина. В результате могут изменяться состав и свойства зубного ликвора. Между дентиновыми трубочками находятся компоненты основного вещества, коллагеновые волокна, минеральные вещества, которые представлены, главным образом, гидроксиапатитами, в меньшей степени карбонатными, магниевыми и фторсодержащими апатитами.

Концентрация фтора достигает наибольших значений на границе дентина с пульпой и постепенно возрастает в течение жизни в 3 - 4 раза. Концентрация магния в дентине значительно превышает таковую в эмали, цементе и кости (см. таблицу 2). Данные литературы об общем содержании натрия и хлоридов в минерализованных тканях неоднозначны, но приводятся сведения о закономерном увеличении их концентрации во внутренних слоях дентина. По сравнению с эмалью в дентине содержится больше бария, кремния, железа, стронция, цинка, но нет отличия в содержании свинца. При повышенном содержании свинца в окружающей среде ~ 90% всего поступающего в организм этого токсического химического элемента накапливается в минерализованных тканях, включая зубо-челюстную систему. Длительно высвобождаясь из твёрдых тканей, свинец вызывает хроническую интоксикацию. Свинец является ингибитором ферментов, участвующих в синтезе гема, что приводит к развитию анемии, порфирии и других осложнений. Выведение свинца из тканей зуба со слюной сопровождается возникновением на дёснах так называемой «свинцовой каймы» тёмного цвета, обусловленной осаждением в тканях плюмбита свинца (РbS).

Из органических веществ в дентине больше всего содержится коллагена 1-го типа (до 82%), а 18 % - приходится на неколлагеновые белки, протеогликаны, липиды, углеводы, цитрат. В дентине, как и в кости, коллаген выполняет, главным образом, роль матрицы минерализации. Помимо коллагена, дентин содержит и другие белки: морфогенетический белок кости (МБК), остеонектин и специфический для дентина белок - фосфофорин. МБК находится в дентине в концентрации, превышающей его концентрацию в кости. Он осуществляет формирование одонтобластов из паренхиматозных клеток пульпы, которые выполняют дентинообразующую функцию. Фосфофорин, составляющий около 1% всех белков дентина, синтезируется одонтобластами, имеет молекулярную массу 151 - 167 кДа, богат серином и аспарагиновой кислотой. Он участвует в формировании центров инициации минерализации, присоединяя фосфат к гидрокси-группе серина. Ионизированные карбоксильные группы фосфофорина, присоединяя ионы кальция, могут также образовывать первичные центры минерализации с дальнейшим ростом кристаллов по типу эпитаксии. В составе протеогликанов дентина преобладают хондроитинсульфаты, обусловливая его амортизационные свойства и эластичность. Протеогликаны, липиды, углеводы, цитрат органического матрикса дентина, выполняют такие же функции, как и в костной ткани. Содержание цитрата в дентине близко к таковому в костной ткани. Скорость обновления минеральных компонентов в дентине больше, чем в эмали, но значительно меньше, чем в костной ткани. Это представляется целесообразным в условиях постоянного риска деминерализации, которому подвергаются эмаль и дентин.

Дентин обладает значительной, но меньшей, чем эмаль твёрдостью. Он более эластичен, и это обеспечивает определённую амортизацию эмали зуба во время жевательной нагрузки. Между одонтобластами и минерализованным дентином расположен тонкий слой сформированного органического матрикса дентина, который называется предентином. Он почти не содержит минеральных веществ. С возрастом, а также при повреждении твёрдых тканей зуба этот слой превращается в минерализованный дентин. За счёт предентина количество дентина в зубе на протяжении жизни человека постоянно увеличивается в ответ на различные раздражители. Дентин, образованный до прорезывания зуба, называется первичным. Он постепенно оттесняется к эмалево-дентиновой границе вновь образующимся дентином. После прорезывания зуба начинается отложение вторичного дентина, который образуется медленнее и не имеет правильной структуры, свойственной первичному дентину. Наряду с участками, содержащими дентиновые канальцы, вторичный дентин содержит участки, состоящие только из основного вещества. Поэтому различают два вида вторичного дентина: регулярный и иррегулярный. Регулярный формируется в ответ на физиологические стимулы, действующие на интактный зуб. Он откладывается по периферии пульповой камеры, постепенно уменьшая её объём. Иррегулярный вторичный дентин образуется при патологических процессах, вызванных острым течением кариеса, а также действием некоторых внешних раздражителей. В процессе старения организма может происходить сужение и постепенное закрытие дентиновых канальцев, образование склерозированного дентина. Образование склерозированного дентина рассматривается как защитная реакция на прогрессирование кариозного процесса и как реакция на действие различных неблагоприятных внешних раздражителей.

76.Особенности биохимического состава и биохимическая роль пульпы.

пульпа (лат. pulpis dentis) — рыхлая волокнистая соединительная ткань, заполняющая полость зуба(лат. cavitas dentis), с большим количеством кровеносных и лимфатических сосудов, нервов.

По периферии пульпы располагаются в несколько слоев одонтобласты, отростки которых находятся в дентинных канальцах на протяжении всей толщи дентина, осуществляя трофическую функцию. В состав отростков одонтобластов входят нервные образования, проводящие болевые ощущения при механическом, физическом и химическом воздействий на дентин.

Кровообращение и иннервация пульпы осущес твляются благодаря зубным артериолам и венулам, нервным ветвям соответствующих артерий и нервов челюстей. Проникая в зубную полость через апикальное отверстиеканала корня зуба, сосудисто-нервный пучок распадается на более мелкие ветви капилляров и нервов.

Пульпа способствует стимуляции регенеративных процессов, которые проявляются в образованиизаместительного дентина при кариозном процессе. Кроме того, пульпа является биологическим барьером, препятствующим проникновению микроорганизмов из кариозной полости через канал корня за пределы зуба в периодонт.

Нервные образования пульпы осуществляют регуляцию питания зуба, а также восприятия зубом различных раздражений, в том числе и болевых. Узкое апикальное отверстие и обилие сосудов и нервных образований способствует быстрому увеличению воспалительного отека при остром пульпите и сдавливанию отеком нервных образований, что обусловливает сильную боль.

Морфологические особенности пульпы зуба связаны с ее функциями:

Пластическая функция осуществляется за счет деятельности одонтобластов, которые, образуя периферический слой пульпы, участвуют в образовании дентина. До прорезывания зуба образуется первичный дентин, после прорезывания гистологически идентичный первичному - вторичный дентин. В результате постоянного отложения вторичного дентина постепенно происходит уменьшение объема полости зуба.

Защитная функция осуществляется за счет деятельности:

макрофагов, которые обеспечивают утилизацию погибших клеток и фагоцитоз микроорганизмов, а также участвуют в развитии иммунных реакций;

лимфоцитов и их разновидности - плазматических клеток, которые активно синтезируют иммуноглобулины IgG и обеспечивают реакции гуморального иммунитета;

фибробластов, которые участвуют в выработке и поддержании необходимого состава межклеточного вещества пульпы, посредством которого происходят все обменные процессы.

К защитной функции также относят процесс образования третичного дентина.

Трофическая функция осуществляется за счет хорошо развитой сосудистой системы, которая имеет ряд особенностей: очень тонкостенные сосуды; скорость потока в пульпе выше, чем в других тканях; внутрипульпарное давление значительно выше, чем в других органах; в промежуточном слое большое количество "спавшихся" капилляров, которые начинают функционировать при воспалении; наличие артериоловенулярных анастомозов обеспечивает возможность прямого шунтирования кровотока, который проявляется в периодическом сбросе крови из артериального русла в венозное (без участия капилляров), при повышении внутрипульпарного давления, вызванного воспалением пульпы.

Сенсорная функция осуществляется за счет деятельности большого количества нервных волокон, которые входят в полость зуба через апикальное отверстие и веерообразно

77.Биохимия ротовой жидкости. Белки слюны. Их характеристика. Роль кальций-связывающего белка.

Биохимический состав слюны.

Слюна является сложным секретом, в котором содержится 99% воды и 1% растворенных органических и неорганических соединений.

 Таблица. Содержание органических веществ в смешанной слюне человека. 

Компоненты

 

Содержание

Компоненты

Содержание

1

Общий белок

2,0-5,0 граммов/л

10

Остаточный азот

7,7-14,7 ммоль/л

2

Муцин

2,0-3,0 граммов/л

11

3,5- цАМФ

5-50 нмоль/л

3

Амилаза

0,2-0,5 граммов/л

12

Глюкоза

0,05-0,10 ммоль/л

4

Гликопротеины

2,0-2,5 граммов/л

13

Нейраминована кислота

0,01 граммов/л

5

Серомукоид

0,29-0,35 граммов/л

14

Пируват

22,0-45,0 мкмоль/л

6

Лизоцим

0,15-0,25 граммов/л

15

Лактат

0,21-0,44 ммоль/л

7

Иммуноглобулин А

0,3 граммов/л

16

Цитрат

10-104 мкмоль/л

8

Свободные аминокислоты

1,5-2,2 ммоль/л

17

Холестерол

0,025-0,09 граммов/л

9

Мочевина

1,5-2,0 ммоль/л

18

Липидный фосфор

0,015-0,030 граммов/л

Органические компоненты слюны. Среди органических компонентов важнейшими являются белки, содержание которых составляет 2,0 – 5,0 граммов/л. В частности: муцин, гликопротеины, протеогликаны, альбумины,  α-глобулины, b-глобулины,  а также ферменты: лизоцим, амилаза, кислая и щелочная фосфатаза,пероксидаза, аминотрансферазы, лактатдегидрогеназа, и тому подобное. Кроме того, в слюне содержатся углеводы (моно-, дисахариды, гликозаминогликаны), липиды (свободные жирные кислоты, фосфоацилглицеролы, холестерол и его эфиры), небелковые азотистые соединения, витамины, гормоны.

Большую часть белков – 2-3 грамма/л составляет гликопротеин-муцин, который синтезируется в подчелюстных железах и благодаря наличию в его составе до60% углеводов предоставляет слюне густого слизистого характера. Компонентами является глюкуроновая кислота, N-ацетилглюкозамин, фруктоза, галактоза. Агрегаты муцину образуют сверхмолекулярные комплексы больших размеров, они связывают и удерживают воду, благодаря чему имеют высокую вязкость.

Негативный, полианионний заряд углеводных компонентов в муцине обусловливает их способность адсорбироваться на поверхности гидроксиапатитов зубной эмали и защищать эмаль от  влияния негативных факторов – в частности органических кислот.

В слюне содержится большое количество (до 10% общего содержания белка) фермента α-амілази (0,2- 0,5 граммов/л). 70% α-амілази продуцируется околоушными слюнными железами, остальные 30% - подчелюстными железами. α-Амілаза катализирует гидролиз полисахаридов - гликогена и крахмала к дисахариду (мальтозе) и остаточным олигосахаридам и декстринів. α-Амилаза слюны за свойствами подобная к α-амилазе поджелудочной железы. Активность α-амилазы смешанной  слюны в норме составляет 623±20 международных единиц.

Лизоцим (мурамидаза) слюны – фермент, содержание которого составляет 0,15-0,25 граммов/л, то есть около 5% всех белков слюны. Основным источником является секрет подчелюстных желез, в околоушных железах его содержание меньше. Лизоцим имеет высокие актибактериальные свойства, поскольку разрушает клеточную стенку бактерий. Клетки бактерий покрытых жесткой пористой оболочкой пептидогликановой природы – муреином. Муреин построен из длинных (нитей) цепей полисахаридов, которые состоят из N-ацетилглюкозамину и N-ацетилмурамовой кислоты. Полисахаридные цепи сшиты между собой белковыми (пента- и тетра-пептидними) фрагментами. Клеточная стенка - (муреин) это гигантская мешковидная молекула пептидогликана, что охватывает всю клетку. Лизоцим расщепляет гликозидные связи между N-ацетилглюкозамином и N-ацетил мурамовой кислотой в полисахаридах и клетка погибает.

Среди защитных ферментов слюны следует отметить пероксидазу и каталазу. Различают лактопероксидазу и миелопероксидазу, которые продуцируются соответственно железами или лейкоцитами. Лактопероксидаза слюны за своими свойствами подобная пероксидазе молока. Миелоперосидаза продуцируется лейкоцитами. Оба фермента ингибируют процессы перекисного окисления липидов, перерывая свободнорадикальные реакции, поскольку удаляют гидроперекиси из цепного процесса.

Ферменты: щелочная фосфотаза, которая усиливает процессы реминерализации и кислая фосфотаза, которая имеет деминерализирующее действие, образуются слюнными железами, микроорганизмами и лейкоцитами. Они проникают в эмаль зуба и существенно влияют на процессы минерализации – деминерализации.

Активность протеолитических ферментов в слюне является низкой в результате высокого содержания ингибиторов протеаз в слюне. В частности:

·         железы продуцируют кислотостабильные ингибиторы трипсиноподобных протеиназ (КСИ);

·         из плазмы поступают: α-антитрипсин и α2-макроглобулин;

·         лейкоциты и микроорганизмы также продуцируют ряд ингибиторов.

В смешанной слюне определяют активность больше 100 ферментов. Кроме них, в слюне присутствуют: гиалуронидаза, нуклеаза, уреаза, ферменты   гликолиза, переаминирования, декарбоксилирования, цикла трикарбонових кислот, тканевого дыхания, супероксиддисмутаза, нейраминидаза, холинэстереза и другие. Поэтому исследования нарушений ферментативной активности слюны находят все более широкое приложение в ензимодіагностиці патологических процессов при ряде заболеваний.

  Особенную группу белков слюны представляют иммуноглобулины. Полость рта имеет иммунитет в известной мере независимый от общей иммунной системы организма. Известно 5 классов иммуноглобулинов крови: IgG, IgМ, IgA, IgD, IgE. В сыворотке основным классом иммуноглобулинов является IGG, в слюне преобладает секреторный IGA, который отличается от IGA плазмы крови. Основную массу  его содержания (до 90%) продуцируют околоушные железы.

Две 4-цепных молекулы IGA соединяются в димер с помощью полипептида, так называемого секреторного компонента (S), и образуют функционально активную форму – sIgA. Полный комплекс sIgA  имеет ряд свойств, которые определяют его способность защищать слизевые оболочки от инородных агентов, которые имеют антигенную природу, а именно:

·        высокую стойкость к действию проеиназ;

·        неспособность связывать компоненты комплемента, который обусловливает отсутствие повреждающей действию на слизевые оболочки;

·        способность  передшкоджати  адгезии мікрооганізмів и их токсинов, а также аллергенов, на эпителии и слизевых оболочках, что блокирует их проникновение во внутрішне среду организма.

Антиадгезивные свойства sIgA обусловливают его антибактериальные, антивирусные и антиаллергические свойства. Важной является также его способность активировать систему клеточного комплемента.

Низкомолекулярные органические компоненты слюны включают:

мочевину – 1,5-2,0 ммоль/л

остаточный азот – 7,7-14,7 ммоль/л

аминокислоты – 1,5-2,2 ммоль/л и на порядок меньшие количества глюкозы, лактата, пирувата, тиоцианата, и тому подобное.

В слюне найдены  витамины В, С, РР, А, Д.

Слюнные железы секретируют специфический гормон – паротин. Он снижает уровень Са2+ крови и усиливает его поступление в ткани, тем самым способствует минерализации зубов и костной ткани. Особенную группу соединений слюны составляют стероидные гормоны. Со слюной в ротовую полость выделяются: глюкокортикоиды, половые, тиреоидные гормоны, и тому подобное. Слюна содержит приблизительно 10-15% гормонов от их концентрации в крови. Поэтому определение содержания гормонов в слюне является информативным показателем состояния надпочечников, половых желез и гонадотропной функции гипофиза. 

Слюна содержит ряд белковых факторов свертывания крови и фибринолиза. В слюне обнаружены соединения, которые имеют тромбопластичну и антигепариновуактивность, а также естественные антикоагулянты – плазминоген и его активаторы. В смешанной слюне активность факторов свертывания крови и фибринолиза больше в сравнении со слюной проливов, которая свидетельствует о взаимном активирующем влияние всех компонентов смешанной слюны.

При нормальных физиологичных условиях активность прокоагулянта более высока, чем антикоагулянтов. При повреждениях тканей ротовой полости существенно повышается активность фибринолитических ферментов. Это способствует очистке слизевых оболочек от фібринозного налета и продуктов распада (автолиза) белков.

         

78.Биохимия ротовой жидкости. Ферменты слюны: амилаза, лизоцим, пероксидаза. Их биологическая роль. Определение активности амилазы слюны.

Слюна является секретом слюнных желез и важной биологической средой полости рта, а потому ее свойства и химический состав существенно влияют на состояние зубов и слизевой оболочки полости рта.

Слюну выделяют три больших парных железы: околоушные, подъязычные, подчелюстные и мелкие слюнные железы полости рта. Секрет каждой железы имеет свой особенный состав и свойства:

·                                           Околоушные железы – выделяют секрет серозного типа.

·                                           Подчелюстные железы – выделяют секрет серозно-слизистого типа.

·                                           Подъязычные железы – выделяют секрет слизистого типа.

В полости рта слюна смешивается и превращается в ротовую жидкость, в которой кроме собственно слюны как секрета слюнных желез содержится также эпителиальные клетки, лейкоциты, бактерии, остатки еды, и тому подобное.

За сутки в среднем выделяется 1,5-2,0 л. слюны при  общей массе всех желез - 5-6 граммов. Наибольшее количество – 71% выделяют подчелюстные железы, 25% - околоушные мелкие слюнные железы, 3-4% - подъязычные.

Скорость секреции нестимулируемой слюны составляет 0,02-0,10мл/мин.(по другим данным 0,3-0,5мл/мин.). Стимулируемая слюна, которая образуется при действии раздражителя, выделяется со скоростью – 1,5-2,3мл/мин.

Функции слюны.

1. Пищеварительная функция. Слюна является первым пищеварительным соком на пути переваривания пищевых продуктов. Слюна увлажняет, размягчает еду и формирует первичную пищевую грудку. Процесс переваривания еды  сопровождается механическим рпзмельчением и насыщением муцином и гидролитическими ферментами: α-амілазою, мальтазой, трипсиноподобными ферментами, пепсиногеном, нуклеазой, каликреиноподобными липазами. Поэтому еда начинает перевариваться уже в ротовой полости, а растворенные в слюне соединения влияют на вкусовые рецепторы и стимулируют функцию желудочно-кишечного тракта.

2. Минерализирующая функция – участие в образовании и поддержании состава твердого апатита тканей зуба и прежде всего эмали. Снабжение эмали питательными соединениями осуществляется преимущественно за счет компонентов слюны. В слюне содержатся все необходимые факторы минерализации – неорганические и органические соединения, а также гормоны и витамины, которые регулируют этот процесс.

Изменения биохимического состава слюны являются основной причиной заболеваний зубов. В частности при гипосаливации и особенно – ксеростомии (отсутствие слюны) быстро развивается заболевание слизевой оболочки рта, а через 3-5 месяцев наступает множественное поражение зубов кариесом.

3. Защитная функция. Слюна является первым барьером на пути проникновения в организм вредных факторов, а потому содержит мощную ферментативную и иммунную систему защиты, которая включает: защитный фермент - лизоцим, ингибиторы протеиназ, факторы свертывания крови, муцин, систему секреторного иммуноглобулина А, лейкоциты.

4. Буферная функция  - обусловленная наличием фосфатного буфера и белков. Слюна поддерживает слабощелочную реакцию в ротовой жидкости, которая является исключительно важным для оптимального протекания процессов минерализации и реминерализации эмали. Слабощелочная буферная система слюны позволяет успешно противодействовать деминерализирующему влиянию органических кислот (конечно в определенных пределах).

5. Функция выделения – со слюной выделяются конечные продукты азотистого обмена, метаболіти гормонов, минеральные соли, продукты превращения лекарств, токсинов. В частности, важной функцией слюны является выведение из организма роданидов – продуктов обеззараживания (детоксикации) цианидов в тканях (содержание 0,02-0,03г/л). Особенно высоким содержание роданидов является в слюне курильщиков (0,06-0,12г/л).

6. Регуляторная функция – это способность слюны поддерживать гомеостаз полости рта. В составе слюны выделяются гормоны и регуляторные пептиды, которые имеют высокую биологическую активность, в частности гормоны: кортизол, эстрогены, прогестерон, тетростерон, паротин и пепдиды: фактор роста эпителия, фактор роста нервов, белки с высоким родством к Са2+.

Физико-химические свойства слюны.

Смешана слюна – это вязкая жидкость с удельным весом 0,001-0,017. Вязкость слюны зависит от содержания муцина, который является основой слизевых образований и предотвращает повреждение слизевой оболочки рта и пищевода, формирует защитное покрытие зубной пеликулы.

рН слюны колеблется от 6,4 до 7,8 в зависимости от гигиены ротовой полости, характера питания, индивидуальных особенностей метаболизма. Сдвиг рНслюны в кислую сторону (<6,2) приводит к деминерализации эмали и развитию кариеса. Такие условия влекут в частности избыточным развитием ацидофильных бактерий, которые образуют большое количество органических кислот, и рядом заболеваний, которые сопровождаются развитием тканевой гипоксии, – сахарный диабет, разного рода гемофилии, ацидурии.

Оптимальным для процессов минерализации и реминерализации тканей зуба является слабощелочное значение рН слюны – 7,2-7,8.

 Биохимический состав слюны.

Слюна является сложным секретом, в котором содержится 99% воды и 1% растворенных органических и неорганических соединений.

 Таблица. Содержание органических веществ в смешанной слюне человека. Слюна содержит: общий белок, муцин, амілазу, гликопротеиды, серомукоид, лізоцим, иммунноглобулин а , свободные аминокислоты, мочевину. 

  Органические компоненты слюны. Среди органических компонентов важнейшими являются белки, содержание которых составляет 2,0 – 5,0 граммов/л. В частности: муцин, гликопротеины, протеогликаны, альбумины,  α-глобулины, b-глобулины,  а также ферменты: лизоцим, амилаза, кислая и щелочная фосфатаза,пероксидаза, аминотрансферазы, лактатдегидрогеназа, и тому подобное. Кроме того, в слюне содержатся углеводы (моно-, дисахариды, гликозаминогликаны), липиды (свободные жирные кислоты, фосфоацилглицеролы, холестерол и его эфиры), небелковые азотистые соединения, витамины, гормоны.

Большую часть белков – 2-3 грамма/л составляет гликопротеин-муцин, который синтезируется в подчелюстных железах и благодаря наличию в его составе до60% углеводов предоставляет слюне густого слизистого характера. Компонентами является глюкуроновая кислота, N-ацетилглюкозамин, фруктоза, галактоза. Агрегаты муцину образуют сверхмолекулярные комплексы больших размеров, они связывают и удерживают воду, благодаря чему имеют высокую вязкость.

Негативный, полианионний заряд углеводных компонентов в муцине обусловливает их способность адсорбироваться на поверхности гидроксиапатитов зубной эмали и защищать эмаль от  влияния негативных факторов – в частности органических кислот.

В слюне содержится большое количество (до 10% общего содержания белка) фермента α-амілази (0,2- 0,5 граммов/л). 70% α-амілази продуцируется околоушными слюнными железами, остальные 30% - подчелюстными железами. α-Амілаза катализирует гидролиз полисахаридов - гликогена и крахмала к дисахариду (мальтозе) и остаточным олигосахаридам и декстринів. α-Амилаза слюны за свойствами подобная к α-амилазе поджелудочной железы. Активность α-амилазы смешанной  слюны в норме составляет 623±20 международных единиц.

Лизоцим (мурамидаза) слюны – фермент, содержание которого составляет 0,15-0,25 граммов/л, то есть около 5% всех белков слюны. Основным источником является секрет подчелюстных желез, в околоушных железах его содержание меньше. Лизоцим имеет высокие актибактериальные свойства, поскольку разрушает клеточную стенку бактерий. Клетки бактерий покрытых жесткой пористой оболочкой пептидогликановой природы – муреином. Муреин построен из длинных (нитей) цепей полисахаридов, которые состоят из N-ацетилглюкозамину и N-ацетилмурамовой кислоты. Полисахаридные цепи сшиты между собой белковыми (пента- и тетра-пептидними) фрагментами. Клеточная стенка - (муреин) это гигантская мешковидная молекула пептидогликана, что охватывает всю клетку. Лизоцим расщепляет гликозидные связи между N-ацетилглюкозамином и N-ацетил мурамовой кислотой в полисахаридах и клетка погибает.

Среди защитных ферментов слюны следует отметить пероксидазу и каталазу. Различают лактопероксидазу и миелопероксидазу, которые продуцируются соответственно железами или лейкоцитами. Лактопероксидаза слюны за своими свойствами подобная пероксидазе молока. Миелоперосидаза продуцируется лейкоцитами. Оба фермента ингибируют процессы перекисного окисления липидов, перерывая свободнорадикальные реакции, поскольку удаляют гидроперекиси из цепного процесса.

Ферменты: щелочная фосфотаза, которая усиливает процессы реминерализации и кислая фосфотаза, которая имеет деминерализирующее действие, образуются слюнными железами, микроорганизмами и лейкоцитами. Они проникают в эмаль зуба и существенно влияют на процессы минерализации – деминерализации.

Активность протеолитических ферментов в слюне является низкой в результате высокого содержания ингибиторов протеаз в слюне. В частности:

·         железы продуцируют кислотостабильные ингибиторы трипсиноподобных протеиназ (КСИ);

·         из плазмы поступают: α-антитрипсин и α2-макроглобулин;

·         лейкоциты и микроорганизмы также продуцируют ряд ингибиторов.

В смешанной слюне определяют активность больше 100 ферментов. Кроме них, в слюне присутствуют: гиалуронидаза, нуклеаза, уреаза, ферменты   гликолиза, переаминирования, декарбоксилирования, цикла трикарбонових кислот, тканевого дыхания, супероксиддисмутаза, нейраминидаза, холинэстереза и другие. Поэтому исследования нарушений ферментативной активности слюны находят все более широкое приложение в ензимодіагностиці патологических процессов при ряде заболеваний.

  Особенную группу белков слюны представляют иммуноглобулины. Полость рта имеет иммунитет в известной мере независимый от общей иммунной системы организма. Известно 5 классов иммуноглобулинов крови: IgG, IgМ, IgA, IgD, IgE. В сыворотке основным классом иммуноглобулинов является IGG, в слюне преобладает секреторный IGA, который отличается от IGA плазмы крови. Основную массу  его содержания (до 90%) продуцируют околоушные железы.

Две 4-цепных молекулы IGA соединяются в димер с помощью полипептида, так называемого секреторного компонента (S), и образуют функционально активную форму – sIgA. Полный комплекс sIgA  имеет ряд свойств, которые определяют его способность защищать слизевые оболочки от инородных агентов, которые имеют антигенную природу, а именно:

·        высокую стойкость к действию проеиназ;

·        неспособность связывать компоненты комплемента, который обусловливает отсутствие повреждающей действию на слизевые оболочки;

·        способность  передшкоджати  адгезии мікрооганізмів и их токсинов, а также аллергенов, на эпителии и слизевых оболочках, что блокирует их проникновение во внутрішне среду организма.

Антиадгезивные свойства sIgA обусловливают его антибактериальные, антивирусные и антиаллергические свойства. Важной является также его способность активировать систему клеточного комплемента.

Низкомолекулярные органические компоненты слюны включают:

мочевину – 1,5-2,0 ммоль/л

остаточный азот – 7,7-14,7 ммоль/л

аминокислоты – 1,5-2,2 ммоль/л и на порядок меньшие количества глюкозы, лактата, пирувата, тиоцианата, и тому подобное.

В слюне найдены  витамины В, С, РР, А, Д.

Слюнные железы секретируют специфический гормон – паротин. Он снижает уровень Са2+ крови и усиливает его поступление в ткани, тем самым способствует минерализации зубов и костной ткани. Особенную группу соединений слюны составляют стероидные гормоны. Со слюной в ротовую полость выделяются: глюкокортикоиды, половые, тиреоидные гормоны, и тому подобное. Слюна содержит приблизительно 10-15% гормонов от их концентрации в крови. Поэтому определение содержания гормонов в слюне является информативным показателем состояния надпочечников, половых желез и гонадотропной функции гипофиза. 

Слюна содержит ряд белковых факторов свертывания крови и фибринолиза. В слюне обнаружены соединения, которые имеют тромбопластичну и антигепариновуактивность, а также естественные антикоагулянты – плазминоген и его активаторы. В смешанной слюне активность факторов свертывания крови и фибринолиза больше в сравнении со слюной проливов, которая свидетельствует о взаимном активирующем влияние всех компонентов смешанной слюны.

При нормальных физиологичных условиях активность прокоагулянта более высока, чем антикоагулянтов. При повреждениях тканей ротовой полости существенно повышается активность фибринолитических ферментов. Это способствует очистке слизевых оболочек от фібринозного налета и продуктов распада (автолиза) белков.

         

Минеральный состав слюны.

 Особенностью слюны является преобладание содержания К+ (в 4-5 раз) и низшее содержание Na+  (в 5-10 раз) по сравнению с их содержанием в плазме крови. Содержание Са2+ в смешанной слюне такой же как в крови – 0,1г/л. Слюна отличается высоким содержанием фосфата, который в 2 разы превышает его содержание в крови и составляет 0,1г/л.

  

Чрезвычайно важной является роль слюны в поддержании растворимых форм кальций-фосфатних солей в точках кристаллизации.

Специальные пролинзобогащеные белки слюны обеспечивают существование кальциевых фосфатов в коллоидном состоянии в растворах перенасыщенныхгидроксиапатитом. Они удерживают ионы Са2+ и препятствуют неконтролированному осаждению кальция из перенасыщенных растворов. Именно благодаря таким белкам слюны, какие богатые на пролин, тирозин и гистидин и имеют высокое родство к гидроксиапатитам, процесс формирования кристаллов носит упорядоченный характер.

79.Особенности биохимического состава слюны. Факторы, влияющие на состав слюны. рН слюны. Патология, вызываемая изменением рН.

Слюна обладает pH от 5,6 до 7,6.[1]Идеальный уровень pH для ротовой полости — выше 7. Чем выше кислотность, тем более благоприятная среда для развития микроорганизмов. Кислая среда возникает, например, после употребления богатой углеводами пищи. На 98,5 % и более состоит из воды, содержит соли различных кислот, микроэлементы и катионы некоторых щелочных металлов, муцин (формирует и склеивает пищевой комок), лизоцим (бактерицидный агент), ферменты амилазуи мальтазу, расщепляющие углеводы до олиго- и моносахаридов, а также другие ферменты, некоторые витамины. Также состав секрета слюнных желёз меняется в зависимости от характера раздражителя.

В более кислой среде слюна становится ненасыщенной, т.к. начинается процесс деминерализации эмали и > ее растворимость. При снижении рн от 6 до 5 степень насыщения ГАП снижается в 6,3 раза, а при > рн от 6 до 8 степень насыщения ГАП повышается почти в 100 раз. Активируются процессы минерализации тканей зуба, сниж-ся растворимость тк., образ-ся зубной камень.

Св-во растворимости эмали определяется константой произведения растворимости К(ПР). это величина характеризуется концентрацией и активностью катионов и анионов в слюне при контакте с ГАП. Она зависит от характера ионов  К(ПР) зависит от рн слюны. В кислой среде при рн = 4 в слюне будет усиленный гидролиз соли СаН РО х2Н О  ->  Са и Н РО  при рн = 6,0 – 6,2. К(ПР) определяется концентрацией ионов Са и НРО , поэтому соль будет гидролизоваться.

Са(НРО ) х Н О, кот.идут на образование кристаллов ГАП, т.е. преобладает процесс минерализации. Расворимость эмали будет снижаться. Значит, перенасыщенность эмали ГАП явл-ся защитным механизмом, уравновешивающим процессы минерализации и деминерализации, что обеспечивает постоянство состава и структуры минерализ.тканей.

80.Биохимический состав зуба. Характеристика биохимических компонентов: белков, липидов, углеводов.

К таким тканям относятся эмаль, дентин, цемент зуба.

эмаль – эптодермального происхождения, а кость, цемент,

дентин – мезентимального происхождения, но , несмотря на это, все эти ткани имеют много общего, состоят из межклеточного вещества или матрицы, имеющего углеводно-белковую природу и большое количество минеральных веществ, в основном, представленных кристаллами апатитов.

 Степень минерализации:

 Эмаль –> дентин –> цемент –> кость.

 В этих тканях следующее процентное содержание:

Минеральные вещества: Эмаль-95%; Дентин-70%; Цемент-50%; Кость-45%

Органические вещества: Эмаль-1 – 1,5%; Дентин-20%; Цемент-27%; Кость-30% 

Вода: Эмаль-30%; Дентин-4%; Цемент-13%; Кость-25%.

Белки и углеводы входят в состав органич.матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.

1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидо- подобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст.белого или пигментированного пятна кол-во этих белков > в  4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.

2. Б.растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер.компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.

3. Своб.пептиды и отд.аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1%

1) ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации

2) белки инициируют минерализацию. Активно участвуют в этом процессе

3) обеспечивают минер.обмен в эмали и др.твердых тканях зуба.

Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.

Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.

Белковый матрикс дентина -  20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин нормального происхождения, содержит глюкозаминогликогены, галактозу, гексазамиты и гелиуроновые кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец.белкамотн-сяамелогенины,

энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен замедленный обмен мин.компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса

Эмаль зуба. Особенности структуры. Белки эмали. Пути поступления веществ в эмаль зуба. Роль углеводов в минерализации эмали.

Коллагеновые белки зуба, особенности их структуры. Роль кальций-связывающего белка в минерализации зуба

Нерастворимые белки тканей зуба представлены преимущественно двумя белками – это коллаген и специфический белок эмали, который не растворяется в ЕДТА (етилендиамінотетраоцтовій кислоте) и Нсl (соляной кислоте). Благодаря чрезвычайно высокой стойкости, этот белок эмали исполняет роль скелета всей структуры эмали, образовывая каркас – “корону” на поверхности зуба.

Коллаген – особенности строения, роль в минерализации зуба. Коллаген является основным фібрилярним белком соединительной ткани и главным нерастворимым белком в тканях зуба. Его содержание составляет около трети всех белков организма. Больше всего коллагену в сухожилиях, связках, коже (выдублена кожа одежды – это практически 100% коллаген), хрящах, костной ткани и тканях зуба.

Коллаген имеет уникальную структуру, которая получила название коллагеновая спираль, – она является левозакрученной спиралью, которая существенно отличается от структуры -спіралі белков. На один виток коллагеновой спирали приходится 3 аминокислотных остатки (а не 3,6 - как в -спіралі), но шаг спирали является значительно больше (0,9 нм), чем в -спіралі (0,54 нм). То есть, первичная коллагеновая спираль является более вытянутой и менее закрученной. Такая структура предопределяется специфической аминокислотной последовательностью. Каждая третья аминокислота в цепи являются глицином (его содержание составляет 33-35%), 11% составляет содержание аланіну.

Наиболее характерным для коллагена является чрезвычайно высокое содержание пролина и гидроксипролина – 20-21%. Высокое содержание пролина и гидроксипролина – аминокислот, которые препятствуют (перерывают) образованию классической -спіралі, предоставляют цепи коллагена жесткую, выгнутую конформацию. Три спиральных полипептидных цепи плотно обвиваются один вокруг второго и образуют правозакручений шнур – структурную единицу, которая получила назву- тропоколлаген. Стержневидни молекулы тропоколлагена имеют длину 300 нм и диаметр 1,5 нм. Прочность соединения полипептидных цепей в структуре тропоколлагена предопределяется чрезвычайно большим количеством межцепных водородных связей между –С=ОЧЧЧЧЧH–N– группами и ковалентных связей необычного типа, которые образуются между двумя остатками лизина соседних цепей согласно реакции:

   Стержневидни молекулы тропоколлагена заключаются в микрофибриллы. Микрофибриллы формируют фибриллы, из которых образуются волокна и щепотки волокон коллагена. Структурной особенностью коллагенового волокна является то, что молекулы тропоколлагена, которые заключаются вдоль коллагеновой фибриллы в виде колагеновіх пучков, не связываются между собой в тяжі по принципу “председатель-хвост”. Между концом одной молекулы и началом следующей есть промежуток с периодом 64 нм. Считается, что промежутки играют важную роль в процессе минерализации, они являются первичными центрами откладывания минеральных соединений. Образованные первичные кристаллы становятся ядрами минерализации и откладывания гідроксиапатиту.

Структура коллагена обусловливает его чрезвычайную прочность на разрыв -  он практически не растягивается. Коллагеновый пучок діаметром 1 мм2способен выдерживать нагрузка – 100Н (10кг). Стальний провод такого же диаметра может выдержать нагрузку – 93 Н (ньютон)

83.Характеристика минерального матрикса и минерального обмена зуба. Кристаллы гидроксиапатита, другие виды апатитов. Химический состав и роль. Роль карбонатного и стронциевого апатита в заболеваниях зуба.

Характеристика минерального матрикса зуба.

Минеральную основу тканей зуба составляют кристаллы разных апатитов.

Основным является гидроксиапатит Ca10 (PO4) 6 (OH) 2 и восьмикальциевий фосфат

Ca8H2 (PO4) 6 • 5H2O.

Состав апатитов тканей зуба.

Апатит (название) Формула

Гидроксиапатит Ca10 (PO4) 6 (OH) 2

Восьмикальциевий фосфат Ca8H2 (PO4) 6 • 5H2O

Карбонатный апатит Ca10 (PO4) 6CO3 или Ca10 (PO4) 5CO3 (OH) 2

Хлорный апатит Ca10 (PO4) 6Cl

Стронциевый апатит SrCa9 (PO4) 6 (OH) 2

Фторапатит Ca10 (PO4) 6F2

. Отдельные виды апатита различаются по химическим и физическим свойствами - прочностью , способностью растворяться ( разрушаться ) под действием

органических кислот , а их соотношение в тканях зуба обусловливается характером питания , обеспеченностью организма микроэлементами и прочее.

Химические и физические свойства апатитов существенно изменяются при включении в их состав таких элементов как Sr2 + и F2. В частности стронций активно конкурирует с кальцием за место связывания в кристаллической решетке

гидроксиапатита . Хотя Ca2 + и Sr2 + имеют сходные химические свойства , замена кальция на стронций изменяет архитектонику гидроксиапатита . стронциевый апатит менее устойчивым и легче разрушается под действием органических кислот, ведет к повышению ломкости зуба. Повышенное содержание стронция в пищевых продуктах способствует увеличению содержания стронциевого апатита и повышает

степень риска развития кариеса . Особенно опасно поступление в организм радиоактивного стронция , который , включаюсь в структуру апатита, может вызвать локальное лучевое поражение тканей. Стронций можно вытеснить из состава апатитов большим количеством кальция. Установлено , что пятикратное увеличение кальция в диете ведет к

уменьшение включения стронция на 50 %. Поэтому в случаях попадания радиоактивного стронция в организм целесообразно употреблять диету , обогащенную

кальцием.

Карбонатный апатит , как и стронциевый , имеет более высокую растворимость в кислой среде по сравнению с гидроксиапатитом . Посиленому12

образованию карбонатного апатита способствуют углеводороды пищевые продукты ,

особенно при их длительном пребывании в ротовой полости . Кроме того , с углеводных продуктов образуется большое количество органических кислот , под

действием этих кислот карбонатный апатит легко разрушается.

Среди всех апатитов наивысшую устойчивость имеет фторапатит . образование

фторапатита повышает прочность эмали , снижает ее проницаемость и повышает

резистентность к кариесогенных факторов. Фторапатит в 10 раз хуже растворяется в кислотах , чем гидроксиапатит . При достаточной обеспеченности фтора резко ( в 4 раза) снижается количество случаев заболевания кариеса .

Процессы минерализации - деминерализиции - основа

минерального обмена тканей зуба.

Основу минерального обмена тканей зуба составляют три

взаимообусловленных процессы , постоянно протекающие в тканях зуба :

минерализация , деминерализация и реминерализация .

Минерализация тканей зуба - это процесс образования органического основания , прежде всего коллагена , и насыщение ее солями кальция. минерализация является

особенно интенсивной в период прорезывания зубов и формирования твердых тканей зуба. Зуб прорезывается с неминерализованою эмалью.различают две основные стадии минерализации.

Первая стадия - образование органической , белковой матрицы . ведущую роль на этой стадии играет пульпа . В клетках пульпы одонтобластах и фибробластах синтезируются и высвобождаются в межклеточный матрикс фибриллы коллагена ,неколлагеновые белки - протеогликаны ( остеокальцин ) и гликозаминогликаны . Коллаген , протеогликаны и гликозаминогликаны формируют

поверхность , на которой будет происходить формирование кристаллической решетки . В цьму процессе протеогликаны играют роль пластификаторов коллагена , то есть повышают его способность к набуханию и увеличивают общую поверхность . Под действием лизосомальных ферментов , высвобождающихся в матрикс, гетерополисахаридыпротеогликанов расщепляются с образованием высокореактивных анионов , которые способны связывать ионы Са2 + и другие катионы .

Вторая стадия - кальцификация , откладывание апатитов на матрице . Ориентированный рост кристаллов начинается в точках кристаллизации или в

точкахнуклеации - участках с высокой концентрацией ионов кальция и фосфатов. Локально высокая концентрация этих ионов обеспечивается способностью

всех компонентов органической матрицы связывать кальций и фосфаты. В частности : в коллагене гидроксигруппы остатков серина ,треонина , тирозина , гидроксипролина и гидроксилизин связывают фосфат ионы ; свободные

карбоксильные группы остатков дикарбоновых кислот в коллагене , протеогликанов и гликопротеинов связывают ионы Са2 + ; остатки γ - карбоксиглутаминовои кислоты кальций связывающего белка – остеокальцина ( кальпротеину ) связывают ионы Са2 + ( остеокальцин - белок с М.М. 6.500 Да

содержит 4 остатка γ - карбоксиглутаминовои кислоты). Иони13 кальция и фосфата концентрируются вокруг ядер кристаллизации и образуют первые микрокристаллы. Существуют две теории инициации процесса минерализации тканей зуба.согласно первой - процесс кристаллизации начинается присоединением фосфат - аниона в

гидроксильных групп серина и гидроксилизин в молекуле коллагена.далее к фосфат аниона присоединяется Са2 +

Согласно второй теории инициатором процесса минерализации является связывания Са2 +

с остатками γ - карбоксиглутаминовои кислоты в молекулах

остекальцину γ - карбоксиглутаминова кислота

Скорее всего , эти два процесса дополняют один другой , что делает инициацию кристаллизации быстрым и эффективным процессом .Оптимальное для минерализации соотношение Са2 + / Р в слюне составляет

1,67 . Такие элементы как Mg2 + , Mn2 + , Zn2 + , Cu +

, Кремний ( Si2 +) усиливают

процесс минерализации. Селен - наоборот замедляет минерализацию тканей зуба.

Деминерализация физиологически обратным процессом , который в норме. уравновешивается минерализацией .

Реминерализация - включает два важных процесса: 1) процесс

восстановление поврежденных участков зуба; 2) ионное замещение гидроксиапатита в

зависимости от характера питания и состояния обменных процессов в тканях зуба. В частности избыточное поступление фтора и стронция будет вести к замены гидроксиапатита на фторапатит и стронциевый апатит, поскольку гидроксильные группы апатита замещаются на F, а кальций замещается на

стронций.

84.Фторапатиты, флюороз, профилактика, лечение.

Флюороз – это заболевание, развивающееся при длительном поступлении в организм повышенного количества соединений фтора.

Причина образования флюороза является избыточное поступление фтора в организм. Причем большое значение имеет фтор, который проникает в организм с водой, так как в этом виде он усваивается гораздо лучше.

Из вышеперечисленного следует, что профилактика флюороза должна быть направлена на уменьшения количества употребляемого фтора. Существует 2 основных направления профилактики флюороза:

Коллективная профилактика;

Индивидуальная профилактика;

Коллективная профилактика флюороза

Коллективная профилактика флюороза направлена на уменьшение количества фтора в питьевой воде. Эта цель достигается двумя основными методами: смена источника воды и смешивания вод двух источников, с целью уменьшения концентрации фтора. Кроме того, используется очищение воды солями алюминия, гидроксидом магния или фосфатом кальция.

Индивидуальная профилактика флюороза

Индивидуальная профилактика флюороза, в отличие от коллективной, проводиться внутри отдельно взятой семьи и не имеет глобальной направленности.

В индивидуальной профилактике с целью снижения количества фтора в питьевой воде используются: кипячение, замораживание, фильтрация окисью магния или обработка воды серно-кислым глиноземом.

Кроме того, можно использовать продукты с большим содержанием витаминов (B, C, D) и минимальным содержанием фтора. Также используется 2 недельные курсы приема глицерофосфата кальция, глюконата кальция и лактата кальция. Целью данного курса является обогащение организма солями кальция и фосфора.

Проводя профилактику флюороза, не стоит забывать о важности фтора для организма, так что без видимых причин уменьшать количество фтора в рационе не стоит.

Лечение флюороза

Гистологические исследования показали, что при флюорозе вследствие нарушения минерализации эмали происходит расширение межпризменного пространства, а при более тяжелых формах структура эмали и вовсе нарушается. Исходя из этого, целью лечения флюороза должно быть минерализация тканей зуба и возвращение пораженным участкам исходного цвета и формы.

Минерализация тканей достигается за счет реминерализирующей терапии. Данная процедура состоит из 15-20 аппликаций препаратами, содержащими большое количество минералов. В основном с этой целью используется Ремодент – препарат, получаемый из костей животных. Кроме местной реминерализирующей терапии, ряд авторов советует лечить флюороз назначением фосфорно-кальциевых препаратов и витаминов.

Современное лечение легких форм флюороза включает в себя отбеливание пораженного участка, с последующей минерализацией. Следует отметить, что здесь подойдет практически любой метод отбеливания.

В более тяжелых случаях флюороза, когда имеются деструктивные изменения эмали, вышеперечисленная методика не эффективна. В таких случаях рекомендуется восстановление анатомической формы зуба винирами или светоотверждаемыми композитами. Однако перед этим следует провести минерализацию зуба, поскольку в противном случае разрушение структуры эмали будет продолжаться и после лечения.

85.Биохимические изменения в тканях зуба при патологии.

Начальные биохимич.изменения возникают на границе между поверхностью эмали и основание зубного камня. Первич.клиническим проявлением явл.появление кариозного пятна (белого или пигментированного). В этом участке эмали сначала проходят процессы деминерализации, особенно выраженные в подповерхност.слое эмали, а затем происходят изменения в органическом матриксе, что приводит к > проницаемости эмали. Деминерализация происходит только в области кариозного пятна и она связана с увеличением микропространства между кристаллами ГАП, > растворимость эмали в кислой среде, возможны 2 типа реакций в зависимости от кислотности:

        Ca (PO ) (OH)   + 8H = 10Ca  + 6 HPO  + 2 H O

        Ca (PO ) (OH)   + 2H = Ca(H O) (PO ) (OH) + CA

        Реакция № 2 приводит к образованию апатита в строении которого имеется вместо 10, 9 атомов Са, т.е. < отношение Са/Р, что приводит к разрушению кристаллов ГАП, т.е. к деминерализации. Можно стимулировать реакцию по первому типу и тормозить деминерализацию. 2 эт.развития кариеса – появление кар.бляшки. Это гелеподобное в-во углеводно-белковой природы, в нем скапливаются микроорганизмы, углеводы, ферменты и токсины. Бляшка пористая, через нее легко проникают углеводы. 3 эт. – образование органических кислот из углеводов за счет действия ферментов кариесогенных бактерий. Сдвиг рн в кисл.сторону., происходит разрушение эмали, дентина, образование кариозной полости.

Реминерализация – это частичное изменение или полное восстановление минер.компонентов эмали зуба за счет компонентов слюны или реминерализующих растворов. Реминерализация основана на адсорбции минер.в-в в кариозные участки. Критерием эффективности реминерализующих растворов  явл-ся такие св-ва эмали, как проницаемость и ее растворимость, исчезновение или уменьшение кариозного пятна, < прироста кариеса. Эти функции выполняет слюна. Используются реминерализующие растворы, содержащие Са, Р, в тех же соотношениях и количествах, что и в слюне, все необходимые микроэлементы.

        Реминерализующие растворы обладают большим эффектом действия, чем смешанная слюна.

        В составе слюны Са и Р соединается с органич.комплексами слюны и содержание этих комплексов уменьшается в слюне. Эти р-ры должны содержать  F в необходимом количестве, так как он влияет на омоложение Са и Р  в твердые ткани зуба и кости. При < концентрации происходит преципитация ГАП из слюны, в отсутствии  F преципитация ГАП не происходит, и вместо ГАП  образуется октокальцийфосфат. Когда F очень много обр-ся вместо ГАП  несвойственные этим тканям минеральные в-ва и чаще CaF .