- •33 Образование и обезвреживание аммиака в организме. Орнитиновый цикл синтеза мочевины. Его роль и связь с другими метаболическими путями.
- •30 Переваривание белков в желудочно-кишечном тракте.
- •Образование и роль соляной кислоты
- •2.Механизм активации пепсина
- •3.Возрастные особенности переваривания белков в желудке
- •Нарушения переваривания белков в желудке
- •31 Общие пути обмена аминокислот. Дезаминирование, трансаминирование, декарбоксилирование. Биогенные амины.
- •32 Специфический обмен аминокислот. Гликогенные и кетогенные аминокислоты. Обмен фенилаланина и тирозина. Нарушения обмена аминокислот.
- •34 Катаболизм сложных белков. Распад гемоглобина. Желтухи.
- •35 Структура и роль нуклеиновых кислот (днк, рнк). Принципы хранения и передачи наследственной информации. Основные этапы биосинтеза днк и рнк (репликация и транскрипция).
- •36 Общая схема биосинтеза белка у прокариот и эукариот. Генетический код. Постсинтетическая модификация белка.
- •37 Молекулярная патология обмена углеводов, липидов, аминокислот и гемоглобина:
- •39 Функциональное значение витаминов a, d, e, k, c в формировании тканей зуба.
- •41 Гормональная регуляция гомеостаза кальция в обеспечении процессов минерализации и деминерализации.
- •42 Биохимия крови. Состав крови. Буферные системы крови. Белки плазмы крови. Значение определения нормальных и патологических компонентов крови.
1 |
2.Белки. Физико-химические свойства белков (денатурация, растворимость, электрофоретическая подвижность). Методы исследования структуры белков. Физико-химические свойства белков: Структура белка определяет его свойства. Существует несколько групп свойств. I. Электрохимические свойства белков: 1. белки - амфотерные полиэлектролиты (амфолиты). Это достигается за счет наличия концевых СОО- и NH3+ групп, а также ионогенных групп боковых радикалов (ГЛУ, АСП, ЛИЗ, АРГ, ГИС). 2. буферность белков (поддержка рН среды). При физиологических значениях рН буферные свойства ограничены и обусловлены наличием кислотных и основных групп. Наибольшим буферным действием обладает гистидин, которого много в гемоглобине, за счет чего последний является мощным буфером крови; 3. наличие заряда в белковой молекуле. Обусловлено соотношением кислых и основных АК, а также ионизацией бокового радикала. Степень ионизации зависит от рН среды. Так, если среда кислая, то ионизация СООН групп заторможена и белок приобретает «+» заряд. В щелочной среде заторможена ионизация NH2 групп и белок заряжается «--». Изоэлектрическое состояние белка наступает, когда заряд белковой молекулы равен 0, а рН среды, при котором белок находится в изоэлектрическом состоянии, называется изоэлектрической точкой (рI). Она определяется соотношением кислых и основных радикалов. У большей части белков цитоплазмы рI меньше 7, т.е. эти белки кислые; у ядерных белков больше 7, т.е. они основные. Наличие заряда используется для разделения белков с помощью электрофореза – движения белков в электрическом поле. Наличие заряда обусловливает устойчивость в растворе. В изоэлектрическом состоянии белки наименее устойчивы и выпадают в осадок. II. Коллоидные свойства. Растворы белков чаще всего достаточно устойчивы. Хорошая растворимость приближает растворы белков к истинным растворам, но высокая молекулярная масса придает им свойства коллоидных систем: 1. способность рассеивать свет (опалисценция). Наблюдается помутнение при боковом освещении - эффект Тиндаля [рис. рассеивающегося луча]. Используется в световой микроскопии (нефелометрии); 2. малая скорость диффузии; 3. высокая вязкость растворов белков; 4. неспособность белков проникать через полупроницаемые мембраны (явление осмоса). На этом основан диализ – очищение белков; 5. способность белковых растворов образовывать гель. Наиболее выражено у фибриллярных белков. III. Гидрофильные свойства. Белки хорошо связываются водой, обусловлено наличием полярных гидрофильных групп. Вода может проникать в белок и связываться с его гидрофильными группами, вызывая его набухание. Также возможно образование гидратной оболочки. 100г белка связывают 30-35г воды. IV. Растворимость белков. Чем больше полярных групп содержит белок, тем больше он растворим. Глобулярные белки растворяются лучше. Растворимость белков зависит от 2-х факторов: - наличия заряда; - образования гидратной оболочки. Чтобы осадить белок, необходимо ликвидировать эти 2 фактора. Осаждение белков с помощью нейтральных солей называется высаливание – обратимое осаждение. После удаления высаливающегося фактора белок сохраняет все свои свойства. V. Денатурация. Под действием внешних факторов нарушается высшие уровни (вторичный, третичный, четвертичный) структурной организации белков с сохранением первичной структуры. При этом белок теряет свои нативные свойства. При денатурации разрываются связи, удерживающие высшие структурные организации. Денатурацию вызывают физические и химические факторы: давление, температура, механическое воздействие, ультразвук, ионизирующее излучение, кислоты, щёлочи, органические растворители, соли тяжёлых металлов. При кратковременном воздействии денатурирующих факторов возможна ренатурация. Методы разделения (фракционирования) белков: 1. Высаливание – разделение на основе различной растворимости альбуминов и глобулинов. Осаждение белков обычно производят сульфатом аммония (NH4)2SO4. В насыщенном растворе этого реактива осаждаются альбумины, а в полунасыщенном – глобулины. 2. Электрофорез – разделение белков при движении в электрическом поле за счет разности их заряда. Основные белки сыворотки крови делятся на несколько фракций. Быстрее всех движутся к аноду альбумины – это гомогенная фракция. Глобулины делятся на 4 фракции: 1, 2, , [рис. альбуминов и 4-х глобулинов и как они движутся к аноду]. В крови определяется общий белок. Нормальное общее содержание белка, но изменено соотношение его фракций – диспротенемия. При инфекционных заболеваниях увеличивается содержание gg-глобулиновой фракции. При заболеваниях почек снижается содержание альбуминовой фракции, но увеличивается содержание aa2 и bb глобулинов. Также наблюдается парапротеинемия – появление патологических белков, например при некоторых онкологических заболеваниях. |
3. Белки. Четвертичная структура. Гемоглобин. Миоглобин. Строение. Особенности функционирования. Гемоглобинопатии. Характеристика сложных белков. Они имеют белковую и небелковую (простетическую) части. Белковую часть составляет полипептид, построенный из АК-остатков. В состав небелковой части может входить: гем, металл, остаток фосфорной кислоты, углеводы, липиды и т.д. Хромопротеины. Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидоксидаза, ксантиноксидаза), цитохромы (гемсодержащие белки) и т.д. Велика биологическая роль этих белков – участвуют в физиологических процессах: дыхание клетки, транспорте кислорода и углекислого газа, окислительно-восстановительных процессах. Гемоглобин. Его белковая часть представлена глобином, небелковая – гемом. Это олигомерный белок, т.е. имеет четвертичную структуру, состоящую из 4 субъединиц. цепи построены из 141 АК-остатка. цепи из 146 АК-остатков [рис. 4-х субъединиц, в каждой нарисована точка - гем]. Каждая из субъединиц связана с гемом: [гем]. Основная функция гемоглобина – транспортная (кислород, углекислый газ). Также он представляет собой основную буферную систему крови (75% от всей буферной емкости крови). Различают: - HbO2 – оксигемоглобин (связан с молекулой O2); - HbCO – карбоксигемоглобин; - HbCO2 – карбгемоглобин; - HbOH – метгемоглобин (образуется при соединении с нитросоединениями, не способен связывать кислород). Типы гемоглобина. Всего известно более 100 типов, но их все делят на 2 группы: 1) Физиологические гемоглобины; 2) Патологические (аномальные). К физиологическим гемоглобинам относятся: - Hb P – примитивный гемоглобин, имеет место быть у 1-2 недельного эмбриона; - Hb F – фетальный или гемоглобин плода, к моменту рождения составляет около 70% всего гемоглобина в крови; - Hb A, Hb A2, Hb A3 – это гемоглобины взрослого организма. На Hb A приходится около 90-96%. Физиологические типы гемоглобинов отличаются глобулиновой частью (АК-составом). Например Hb A содержит 2 и 2bb субъединицы, а Hb F – 2 и 2 субъединицы. К аномальным (возникающих при наследственных заболеваниях) гемоглобинам относятся: - HbS – гемоглобин, сопутствующий серповидно-клеточной анемии. Отличается от нормального тем, что с N-конца в 6 положении bb–цепи глутамин заменен на валин. Миоглобин по сравнению с гемоглобином имеет третичную структуру, одну полипептидную цепь, один гем и может связывать одну молекулу кислорода. Гемоглобин и миоглобин функционируют вместе. Гемоглобин доставляет кислород из легких к тканям, а миоглобин перераспределяет его внутри клетки (доставляет к митохондриям). Оба белка – гемопротеины, т.е. гемсодержащие белки. ЕМОГЛОБИНОПАТИЯ (от гемоглобин и ...патия) (гемоглобиноз) - группа наследственных аболеваний, обусловленных присутствием в эритроцитах дефектных гемоглобинов. Основное проявление - гемолиз. См. Серповидноклеточная анемия, Талассемия.
|
4. Ферменты – биокатализаторы. Активный центр ферментов. Его формирование у ферментов с различной структурой. Активаторы и ингибиторы. Строение ферментов. В пространственной структуре фермента условно выделяют ряд участков, которые выполняют соответствующие им функции. Активный центр (АЦ) – участок в молекуле фермента, где происходит связывание и химическое превращение субстрата (S). Субстрат – вещество, подвергающееся химическому превращению (например, для фермента лактатдегидрогеназы (ЛДГ) субстратом будет молочная кислота). В активном центре выделяется контактный участок и каталитический участок. Контактный участок – это место активного центра, в котором происходит связывание фермента с субстратом по принципу комплементарности, т.е. именно контактный участок обеспечивает специфическое сродство субстрата ферменту. Образовавшийся комплекс носит название фермент-субстратный комплекс. Каталитический участок (центр) – это место в активном центре фермента, где происходит химическое превращение субстрата [рис. изображён фермент-субстратный комплекс, а именно контактный участок, каталитический участок, активный центр и субстрат]. Если фермент – сложный белок, то обычно простетическая часть находится тоже в активном центре и участвует в формировании активного центра. Активный центр занимает небольшую часть молекулы фермента, обычно располагается в углублении, и в его образовании участвует небольшое число аминокислотных остатков (до 20). Аминокислотные остатки могут быть удалены друг от друга, но при формировании пространственной структуры фермента они располагаются в области активного центра. В формировании активного центра могут участвовать остатки, несущие следующие функциональные группы: NH2 (ЛИЗ, АРГ), COOH (ГЛУ, АСП), OH (СЕР, ТРЕ), SH (ЦИС), имидазольное кольцо (ГИС). В качестве единиц, участвующих в формировании активного центра, могут выступать кофакторы - ионы металлов (Cu2+, Fe2+ и т.д.), а также коферменты. В сложном ферменте АК-остатки активного центра создают условия для правильной его конформации и помогают кофакторам в связывании, ориентации, а, следовательно, и в превращении субстрата. Боковые группы остальных аминокислот не участвуют в образовании активного центра, но обеспечивают правильную пространственную конформацию активного центра и влияют на его реакционную способность. Ряд ферментов могут содержать аллостерический центр. [рис. фермента с аллостерическим и активным центрами] Эти ферменты относят к аллостерическим ферментам. К аллостерическому центру присоединяются различные вещества, отличные по строению от субстрата. Эти вещества могут изменять конформацию активного центра, т.е. влиять на связывание и превращение субстрата, они называются аллостерическими эффекторами. Все аллостерические эффекторы делятся на положительные – активаторы, и отрицательные – ингибиторы. |
||
|
||
5.Ферменты. Регуляция действия ферментов: аллостерические механизмы, протеолиз. Регуляция активности ферментов. Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают: - активаторы – вещества, увеличивающие скорость реакции; - ингибиторы – вещества, уменьшающие скорость реакции. Активация ферментов. Различные активаторы могут связываться либо с активным центром фермента, либо вне его. К группе активаторов, влияющих на активный центр, относятся: ионы металла, коферменты, сами субстраты. Активация с помощью металлов протекает по различным механизмам: - металл входит в состав каталитического участка активного центра; - металл с субстратом образуют комплекс; - за счет металла образуется мости между субстратом и активным центром фермента. Субстраты также являются активаторами. При увеличении концентрации субстрата скорость реакции повышается. по достижению концентрации насыщения субстрата эта скорость не изменяется. Если активатор связывается вне активного центра фермента, то происходит ковалентная модификация фермента: 1) частичный протеолиз (ограниченный протеолиз). Таким образом активируются ферменты пищеварительного канала: пепсин, трипсин, химотрипсин. Трипсин имеет состояние профермента трипсиногена, состоящего из 229 АК остатков. Под действием фермента энтерокиназы и с добавлением воды он превращается в трипсин, при этом отщепляется гексапептид. Изменяется третичная структура белка, формируется активный центр фермента и он переходит в активную форму. 2) фосфорилирование - дефосфорилирование. Пр.: липаза+АТФ= (протеинкиназа) фосфорилированная липаза+АДФ. Это трансферная реакция, использующая фосфат АТФ. При этом осуществляется перенос группы атомов от одной молекулы к другой. Фосфорилированная липаза является активной формой фермента. Таким же путем происходит активация фосфорилазы: фосфорилаза B+ 4АТФ= фосфорилаза А+ 4АДФ. Также при связывании активатора вне активного центра происходит диссоциация неактивного комплекса «белок-активный фермент». Например, протеинкиназа – фермент, осуществляющий фосфорилирование (цАМФ-зависимое). Протеинкиназа – это белок, имеющий четвертичную структуру и состоящий из 2-х регуляторный и 2-х каталитических субъединиц. R2C2+2цАМФ=R2цАМФ2+ 2С. Такой тип регуляции называется аллостерической регуляцией (активацией). Ингибирование ферментов. Ингибитор – это вещество, вызывающее специфическое снижение активности фермента. Следует различать ингибирование и инактивацию. Инактивация – это, например, денатурация белка в результате действия денатурирующих агентов. По прочности связывания ингибитора с ферментом ингибиторы делят на обратимые и необратимые. Необратимые ингибиторы прочно связаны и разрушают функциональные группы молекулы фермента, которые необходимы для проявления его каталитической активности. Все процедуры по очистке белка не влияют на связь ингибитора и фермента. Пр.: действие фосфорорганических соединений на фермент – холинэстеразу. Хлорофос, зарин, зоман и др. фосфорорганические соединения связываются с активным центром холинэстеразы. В результате происходит фосфорилирование каталитических групп активного центра фермента. В следствии молекулы фермента, связанные с ингибитором, не могут связываться с субстратом и наступает тяжелое отравление. Также выделяют обратимые игнибиторы, например прозерин для холинэстеразы. Обратимое ингибирование зависит от концентрации субстрата и ингибитора и снимается избытком субстрата.По механизму действия выделяют: - конкурентное ингибирование; - неконкурентное ингибирование; - субстратное ингибирование; - аллостерическое. 1) Конкурентное (изостерическое) ингибирование – это торможение ферментативной реакции, вызванное связыванием ингибитора с активным центром фермента. При этом ингибитор имеет сходство с субстратом. В процессе происходит конкуренция за активный центр: образуются фермент-субстратные и ингибитор-ферментные комплексы. E+SES EP E+P; E+I E. Пр.: сукцинатдегидрогеназная реакция [рис. COOH-CH2-CH2-COOH(над стрелкой СДГ, под ФАДФАДН2) COOH-CH=CH-COOH]. Истинным субстратом этой реакции является сукцинат (янтарная к-та). Ингибиторы: малоновая к-та (COOH-CH2-COOH) и оксалоацетат (COOH-CO-CH2-COOH). [рис. фермента с 3 дырками+ субстрат+ ингибитор= комплекс ингибитора с ферментом]. Пр.: фермент холинэстераза катализирует превращение ацетилхолина в холин: (CH3)3-N-CH2-CH2-O-CO-CH3 (над стрелкой ХЭ, под – вода) CH3СOOH+(CH3)3-N-CH2-CH2-OH. Конкурентными ингибиторами являются прозерин, севин. 2) Неконкурентное ингибирование – торможение, связанное с влиянием ингибитора на каталитическое превращение, но не на связывание фермента с субстратом. В этом случае ингибитор может связываться и с активным центром (каталитический участок) и вне его. Присоединение ингибитора вне активного центра приводит к изменению конформации (третичной структуры) белка, вследствие чего изменяется конформация активного центра. Это затрагивает каталитический участок и мешает взаимодействию субстрата с активным центром. При этом ингибитор не имеет сходства с субстратом и это ингибирование нельзя снять избытком субстрата. Возможно образование тройных комплексов фермент-ингибитор-субстрат. Скорость такой реакции не будет максимальной. К неконкурентным ингибиторам относят: - цианиды. Они связываются с атомом железа в цитохромоксидазе и в результате этого фермент теряет свою активность, а т.к. это фермент дыхательной цепи, то нарушается дыхание клеток и они гибнут. - ионы тяжёлых металлов и их органические соединения (Hg, Pb и др.). Механизм их действия связан с соединением их с различными SH-группами. [рис. фермента с SH-группами, иона ртути, субстрата. Все это соединяется в тройной комплекс]. - ряд фармакологических средств, которые должны поражать ферменты злокачественных клеток. Сюда же относятся ингибиторы, использующиеся в сельском хозяйстве, бытовые отравляющие вещества. 3) Субстратное ингибирование – торможение ферментативной реакции, вызванное избытком субстрата. Происходит в результате образования фермент-субстратного комплекса, неспособного подвергаться каталитическому превращению. Его можно снять и уменьшить концентрацию субстрата. [рис. связывания фермента сразу с 2 субстратами]. 4) Аллостерическое ингибирование – торможение ферментативной реакции, вызванное присоединением аллостерического ингибитора в аллостерическом центре аллостерического фермента. Такой тип ингибирования характерен для аллостерических ферментов, имеющих четвертичную структуру. В качестве ингибиторов могут выступать метаболиты, гормоны, ионы металлов, коферменты. Механизм действия: а) присоединение ингибитора к аллостерическому центру; б) изменяется конформация фермента; в) изменяется конформация активного центра; г) нарушается комплиментарность активного центра фермента к субстрату; д) уменьшается число молекул ES; е) уменьшается скорость ферментативной реакции. [рис. фермент с 2 дырками, к одной аллостерический ингибитор и вторая меняет форму]. К особенностям аллостерических ферментов относят ингибирование по отрицателтной обратной связи. A(E1)B(E2) C(E3) D (от D стрелочка к стрелке между А и В). D – метаболит, действующий как аллостерический ингибитор на фермент Е1. Протеолиз — процесс ферментативного гидролиза белков, катализирующийся протеолитическими ферментами (протеазами). Протеолиз играет большую роль в следующих процессах в организме: расщепление до аминокислот белков пищи, благодаря действию на них пищеварительных ферментов в желудке итонкой кишке; расщепление собственных белков организма в процессе метаболизма; образование ферментов, гормонов и биологически активных пептидов из их неактивных предшественников; в растениях протеолиз участвует в мобилизации запасных белков семян при прорастании. Действие протеолитических ферментов может быть разделено на две различные категории: ограниченный протеолиз, в котором протеаза специфически расщепляет одну или несколько пептидных связей в белке-мишени, что обычно приводит к изменению функционального состояния последнего: ферменты, например, при этом становятся активными, а прогормоны превращаются в гормоны; неограниченный или тотальный протеолиз, при котором белки распадаются до своих аминокислот. Протеазы классифицируются по типу их механизма катализа. Международный союз по биохимии и молекулярной биологии выделяет четыре класса протеаз: Сериновые протеиназы Аспарагиновые протеиназы Цистеиновые протеиназы Металлопротеиназы По месту атаки молекулы субстрата протеолитические ферменты делятся на эндопептидазы и экзопептидазы: Эндопептидазы, или протеиназы, расщепляют пептидную связь внутри пептидной цепи. Они «узнают» и связывают короткие пептидные последовательности субстратов и относительно специфично гидролизуют связи между определенными аминокислотными остатками. Экзопептидазы гидролизуют пептиды с конца цепи: аминопептидазы — с N-конца, карбоксипептидазы — с С-конца. Наконец, дипептидазы расщепляют только дипептиды. |
||
5.Ферменты. Регуляция действия ферментов: аллостерические механизмы, протеолиз. Регуляция активности ферментов. Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают: - активаторы – вещества, увеличивающие скорость реакции; - ингибиторы – вещества, уменьшающие скорость реакции. Активация ферментов. Различные активаторы могут связываться либо с активным центром фермента, либо вне его. К группе активаторов, влияющих на активный центр, относятся: ионы металла, коферменты, сами субстраты. Активация с помощью металлов протекает по различным механизмам: - металл входит в состав каталитического участка активного центра; - металл с субстратом образуют комплекс; - за счет металла образуется мости между субстратом и активным центром фермента. Субстраты также являются активаторами. При увеличении концентрации субстрата скорость реакции повышается. по достижению концентрации насыщения субстрата эта скорость не изменяется. Если активатор связывается вне активного центра фермента, то происходит ковалентная модификация фермента: 1) частичный протеолиз (ограниченный протеолиз). Таким образом активируются ферменты пищеварительного канала: пепсин, трипсин, химотрипсин. Трипсин имеет состояние профермента трипсиногена, состоящего из 229 АК остатков. Под действием фермента энтерокиназы и с добавлением воды он превращается в трипсин, при этом отщепляется гексапептид. Изменяется третичная структура белка, формируется активный центр фермента и он переходит в активную форму. 2) фосфорилирование - дефосфорилирование. Пр.: липаза+АТФ= (протеинкиназа) фосфорилированная липаза+АДФ. Это трансферная реакция, использующая фосфат АТФ. При этом осуществляется перенос группы атомов от одной молекулы к другой. Фосфорилированная липаза является активной формой фермента. Таким же путем происходит активация фосфорилазы: фосфорилаза B+ 4АТФ= фосфорилаза А+ 4АДФ. Также при связывании активатора вне активного центра происходит диссоциация неактивного комплекса «белок-активный фермент». Например, протеинкиназа – фермент, осуществляющий фосфорилирование (цАМФ-зависимое). Протеинкиназа – это белок, имеющий четвертичную структуру и состоящий из 2-х регуляторный и 2-х каталитических субъединиц. R2C2+2цАМФ=R2цАМФ2+ 2С. Такой тип регуляции называется аллостерической регуляцией (активацией). Ингибирование ферментов. Ингибитор – это вещество, вызывающее специфическое снижение активности фермента. Следует различать ингибирование и инактивацию. Инактивация – это, например, денатурация белка в результате действия денатурирующих агентов. По прочности связывания ингибитора с ферментом ингибиторы делят на обратимые и необратимые. Необратимые ингибиторы прочно связаны и разрушают функциональные группы молекулы фермента, которые необходимы для проявления его каталитической активности. Все процедуры по очистке белка не влияют на связь ингибитора и фермента. Пр.: действие фосфорорганических соединений на фермент – холинэстеразу. Хлорофос, зарин, зоман и др. фосфорорганические соединения связываются с активным центром холинэстеразы. В результате происходит фосфорилирование каталитических групп активного центра фермента. В следствии молекулы фермента, связанные с ингибитором, не могут связываться с субстратом и наступает тяжелое отравление. Также выделяют обратимые игнибиторы, например прозерин для холинэстеразы. Обратимое ингибирование зависит от концентрации субстрата и ингибитора и снимается избытком субстрата.По механизму действия выделяют: - конкурентное ингибирование; - неконкурентное ингибирование; - субстратное ингибирование; - аллостерическое. 1) Конкурентное (изостерическое) ингибирование – это торможение ферментативной реакции, вызванное связыванием ингибитора с активным центром фермента. При этом ингибитор имеет сходство с субстратом. В процессе происходит конкуренция за активный центр: образуются фермент-субстратные и ингибитор-ферментные комплексы. E+SES EP E+P; E+I E. Пр.: сукцинатдегидрогеназная реакция [рис. COOH-CH2-CH2-COOH(над стрелкой СДГ, под ФАДФАДН2) COOH-CH=CH-COOH]. Истинным субстратом этой реакции является сукцинат (янтарная к-та). Ингибиторы: малоновая к-та (COOH-CH2-COOH) и оксалоацетат (COOH-CO-CH2-COOH). [рис. фермента с 3 дырками+ субстрат+ ингибитор= комплекс ингибитора с ферментом]. Пр.: фермент холинэстераза катализирует превращение ацетилхолина в холин: (CH3)3-N-CH2-CH2-O-CO-CH3 (над стрелкой ХЭ, под – вода) CH3СOOH+(CH3)3-N-CH2-CH2-OH. Конкурентными ингибиторами являются прозерин, севин. 2) Неконкурентное ингибирование – торможение, связанное с влиянием ингибитора на каталитическое превращение, но не на связывание фермента с субстратом. В этом случае ингибитор может связываться и с активным центром (каталитический участок) и вне его. Присоединение ингибитора вне активного центра приводит к изменению конформации (третичной структуры) белка, вследствие чего изменяется конформация активного центра. Это затрагивает каталитический участок и мешает взаимодействию субстрата с активным центром. При этом ингибитор не имеет сходства с субстратом и это ингибирование нельзя снять избытком субстрата. Возможно образование тройных комплексов фермент-ингибитор-субстрат. Скорость такой реакции не будет максимальной. К неконкурентным ингибиторам относят: - цианиды. Они связываются с атомом железа в цитохромоксидазе и в результате этого фермент теряет свою активность, а т.к. это фермент дыхательной цепи, то нарушается дыхание клеток и они гибнут. - ионы тяжёлых металлов и их органические соединения (Hg, Pb и др.). Механизм их действия связан с соединением их с различными SH-группами. [рис. фермента с SH-группами, иона ртути, субстрата. Все это соединяется в тройной комплекс]. - ряд фармакологических средств, которые должны поражать ферменты злокачественных клеток. Сюда же относятся ингибиторы, использующиеся в сельском хозяйстве, бытовые отравляющие вещества. 3) Субстратное ингибирование – торможение ферментативной реакции, вызванное избытком субстрата. Происходит в результате образования фермент-субстратного комплекса, неспособного подвергаться каталитическому превращению. Его можно снять и уменьшить концентрацию субстрата. [рис. связывания фермента сразу с 2 субстратами]. 4) Аллостерическое ингибирование – торможение ферментативной реакции, вызванное присоединением аллостерического ингибитора в аллостерическом центре аллостерического фермента. Такой тип ингибирования характерен для аллостерических ферментов, имеющих четвертичную структуру. В качестве ингибиторов могут выступать метаболиты, гормоны, ионы металлов, коферменты. Механизм действия: а) присоединение ингибитора к аллостерическому центру; б) изменяется конформация фермента; в) изменяется конформация активного центра; г) нарушается комплиментарность активного центра фермента к субстрату; д) уменьшается число молекул ES; е) уменьшается скорость ферментативной реакции. [рис. фермент с 2 дырками, к одной аллостерический ингибитор и вторая меняет форму]. К особенностям аллостерических ферментов относят ингибирование по отрицателтной обратной связи. A(E1)B(E2) C(E3) D (от D стрелочка к стрелке между А и В). D – метаболит, действующий как аллостерический ингибитор на фермент Е1. Протеолиз — процесс ферментативного гидролиза белков, катализирующийся протеолитическими ферментами (протеазами). Протеолиз играет большую роль в следующих процессах в организме: расщепление до аминокислот белков пищи, благодаря действию на них пищеварительных ферментов в желудке итонкой кишке; расщепление собственных белков организма в процессе метаболизма; образование ферментов, гормонов и биологически активных пептидов из их неактивных предшественников; в растениях протеолиз участвует в мобилизации запасных белков семян при прорастании. Действие протеолитических ферментов может быть разделено на две различные категории: ограниченный протеолиз, в котором протеаза специфически расщепляет одну или несколько пептидных связей в белке-мишени, что обычно приводит к изменению функционального состояния последнего: ферменты, например, при этом становятся активными, а прогормоны превращаются в гормоны; неограниченный или тотальный протеолиз, при котором белки распадаются до своих аминокислот. Протеазы классифицируются по типу их механизма катализа. Международный союз по биохимии и молекулярной биологии выделяет четыре класса протеаз: Сериновые протеиназы Аспарагиновые протеиназы Цистеиновые протеиназы Металлопротеиназы По месту атаки молекулы субстрата протеолитические ферменты делятся на эндопептидазы и экзопептидазы: Эндопептидазы, или протеиназы, расщепляют пептидную связь внутри пептидной цепи. Они «узнают» и связывают короткие пептидные последовательности субстратов и относительно специфично гидролизуют связи между определенными аминокислотными остатками. Экзопептидазы гидролизуют пептиды с конца цепи: аминопептидазы — с N-конца, карбоксипептидазы — с С-конца. Наконец, дипептидазы расщепляют только дипептиды. |
||
9.Флавиновые ферменты. Их простетические группы. Роль в биологическом окислении. ФЛАВИНОВЫЕ ФЕРМЕНТЫ , сложные ферменты, простетич. группами к-рых служат производные рибофлавина. У нек-рых Ф. ф. простетич. группой является флавинмононуклеотид (ФМН), к-рый состоит из остатка рибофлавина и фосфорной к-ты. Простетич. группа большинства Ф. ф.— флавинадениндинуклеотид (ФАД), в состав к-рого входит один остаток рибофлавина, два остатка фосфорной к-ты, рибоза и аденин. Ф. ф.— промежуточные переносчики водорода в цепи биологическою окисления. 2 группа: флавиновые коферменты, производные витамина В2. Сюда относят: - флавинмононуклеотид (ФМН); - флавинадениндинуклеотид (ФАД). Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД. рис. изоалоксазиновое кольцо соединено с ребитолом, ребитол с фосфорной к-той, а фосфорная к-та – с АМФ]
ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. [рис. COOH-CH2-CH2-COOH (над стрелкой – СДГ, под – ФАД и ФАДН2) COOH-CH=CH-COOH]. Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН2. Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах.
|
||
13. Роль тканевого дыхания в обеспечении организма энергией. Взаимосвязь биологического окисления с ЦТК и бета-окислением. Тканевое дыхание клеточное дыхание, совокупность ферментативных процессов, протекающих при участии кислорода воздуха в клетках органов и тканей, в результате чего продуктырасщепления углеводов, жиров, белков окисляются до углекислого газа и воды, а значит, частьосвобождающейся энергии запасается в форме богатых энергией, или макроэргических соединений (См.Макроэргические соединения). Т. д. отличают от внешнего дыхания (См. Дыхание) —совокупности физиологических процессов, обеспечивающих поступлениев организм кислорода и выведение из него углекислого газа. Многие ферменты, катализирующие эти реакции, находятся в особых клеточныхорганоидах — митохондриях (См. Митохондрии). Тканевое дыхание обеспечивает образование и постоянное пополнение АТФ в клетках. В случае недостатка в снабжении клеток животных и человека кислородом запасы АТФ не исчерпываются сразу. Их пополнение может происходить в результате включения дополнительных механизмов — систем анаэробного (без участия кислорода) распада углеводов — гликолиза и гликогенолиза. Однако этот путь энергетически во много раз менее эффективен и не может обеспечить функции и целостность структуры органов и тканей. Биологическая роль Тканевое дыханиене исчерпывается существенным вкладом в энергетический обмен организма. На различных его этапах образуются молекулы органических соединений, используемых клетками в качестве промежуточных продуктов для различных биосинтезов.
1 стр |
||
8.Современные представления о механизме тканевого дыхания. Пиридинзависимые дегидрогеназы. Их коферменты. Строение и роль в биологическом окислении. III. Биологическое окисление. Биологическое окисление – это совокупность реакций окисления, протекающих в живом организме. Существует несколько теорий биологического окисления: 1. Теория “активации” кислорода (Бах). Образуются пероксиды: а) О=О–О–О– б) –О–О– + S SOO [треугольник, в углах которого три указанные буквы; S = субстрат; над стрелочкой реакции надпись “оксигеназы”] в) SOO + S’ SO + S’O [фермент пероксидаза] Эта теория не объясняет окисление в животных тканях. 2. Теория активирования водорода (Палладин) В клетках животных окисление идет благодаря дегидрированию: А·Н2 + Ко А + Ко·Н2 [фермент дегидрогеназа] Ко·Н2 + ½О2 Ко + Н2О 3. Современные представления (Палладин и Бах). Биологическое окисление – это процесс переноса электронов. Если акцептором электронов выступает молекулярный кислород, то его называют “тканевым дыханием”: RH2 R + 2H+ + 2e-- 2H+ + 2e-- + ½ O2 H2O + 210 кДж. Биологическое окисление – многоступенчатый полиферментативный процесс, заключающийся в многократной передаче протонов и электронов по цепи ферментов. При этом химическая энергия выделяется небольшими порциями (постепенно, без взрывов). Дыхательная цепь (ДЦ). (или Цепь Переноса Электронов – ЦПЭ, или Электрон-Транспортная Цепь – ЭТЦ). ДЦ – это конвейер по переносу электронов и протонов от восстановленного субстрата к кислороду. Компоненты ДЦ: 1. Пиридинзависимые ДГ (НАД-, НАДФ-зависимые). Рабочая часть – витамин РР (никотинамид).
[При восстановлении к атомам азота при двойных связях, отмеченных стрелками, присоединяется по атому водорода, а двойная связь перемещается на общую грань колец В и С.] 3. Убихинон (Ko Q). Обладает о/в-свойствами благодаря кето-енольной таутомерии. 4. Цитохромы. Относятся к гемопротеинам, содержат атомы железа, переход степени (2↔3) окисления которого и обеспечивает транспорт электронов (протоны ими не транспортируются !!! ). В ДЦ цитохромы расположены в следующей последовательности: b - c1 - c - a - a3. Совокупность цитохромов b и c1 называют КоQH-дегидрогеназой, т.к. они отщепляют атом водорода от убихинона (KoQ). Цитохромы а и а3 – цитохромоксидазой (т.к. способствуют переносу электронов на молекулярный кислород). Функционирование ДЦ. Субстрат·Н2 → НАД → ФМН → КоQ → 2b → 2c1 → 2c → 2a → 2a3 → O2 . [До KoQ включительно переносятся 2 протона и 2 электрона, а по цепи цитохромов – только 2 электрона]. Существует и укороченная ДЦ, в которой субстрат окисляется ФАД-зависимой ДГ, отдающей затем 2 протона и 2 электрона непосредственно на убихинон. Необходимо отметить, что АТФ выделяется на этапах: НАД→ФМН (в укороченной ДЦ эта молекула АТФ не выделяется!), b→c1 , a→a3. Вообще, молекула АТФ синтезируется если разница потенциалов между соседними компонентами цепи превышает 0,2 В, т.е. может выделиться энергия не менее 50 кДж/моль. Окислительное фосфорилирование (хемиосмотическая теория Митчелла, 1961) 1. Мембраны митохондрий непроницаемы для протонов. 2. В результате процессов окисления в митохондрии формируется протонный потенциал (электрохимический градиент протонов). 3. Диффузия протонов обратно на внутреннюю поверхность мембраны сопряжено с фосфорилированием, которое осуществляется АТФ-синтетазой. Сам процесс выглядит так: 1. НАД·Н-ДГ отдает пару электронов на ФМН-ДГ. Это позволяет ФМН принять пару протонов из матрикса с образованием ФМН·Н2. Пара протонов, принадлежащих НАД, выталкивается на цитоплазматическую поверхность внутренней мембраны митохондрий. 2. ФМН·Н2-ДГ выталкивает пару протонов на цитоплазматическую поверхность мембраны, а пару электронов отдает на убихинон (KoQ), который при этом получает способность присоединить пару электронов из матрикса с образованием KoQ·H2. 3. KoQ·H2 выталкивает пару протонов в цитоплазму, а электроны перебрасываются на кислород в матриксе с образованием воды. В итоге при переносе пары электронов из матрикса в межмембранное пространство перекачивается 6 протонов, что и ведет к созданию разницы потенциалов и разницы рН между поверхностями внутренней мембраны. 4. Разница потенциалов и разница рН обеспечивают движение протонов через протонный канал в обратном направлении. 5. Движение протонов ведет к активации АТФ-синтетазы и синтезу АТФ из АДФ и фосфата. Окислительное фосфорилирование – это процесс образования АТФ из АДФ и ФН за счет энергии транспорта электронов в дыхательной цепи. Возможно разобщение окислительного фосфорилирования, например, при повреждении внутренней мембраны митохондрий. При этом происходит свободное окисление без фосфорилирования (т.е. без синтеза АТФ), сопровождающееся пирогенным эффектом (локальным повышением температуры). Таким образом на митохондиальную мембрану действует, например, 2,4-динитрофенол. Альтернативные варианты биологического окисления. К ним относят оксигеназный путь окисления. Он не относится к энергоснабжающим клетку процессам, а используется для деградации (разрушения) метаболитов. Ферменты оксигеназного пути катализируют включение кислорода в субстрат. Различают ди- и монооксигеназный пути. Диоксигеназный путь содержит ферменты, которые включают в молекулу субстрата оба атома кислорода. Этот вариант встречается очень редко. S + O2 → S·O2 Монооксигеназный путь – в молекулу субстрата включается один из атомов кислорода, а другой восстанавливается до воды. Для этого необходим еще косубстрат (донор электронов). A-H + O2 + ZH2 → A-OH + Z + H2O. Для примера рассмотрим систему микросомального окисления. Она содержит цитохромы Р-450 и b5. Эта система играет большую роль в обезвреживании многих токсинов и лекарств путем их гидроксилирования. R-H → R-OH. При этом часто образуется пероксид водорода, который разрушается каталазой. первый тип - никотинамидные коферменты - НАД и НАДФ. Никотинамид, входящий в их состав, может присоединять протоны и электроны водорода с образованием восстановленной формы коферментов. Дегидрогеназы, в состав которых входят никотинамидные коферменты, катализируют окисление многочисленных субстратов и отличаются высокой специфичностью. - второй тип - флавиновые дегидрогеназы или флавопротеины. Это дегидрогеназы, содержащие в своем составе коферменты ФАД и ФМН. Их активной частью является рибофлавин. За счет внутримолекулярной перегруппировки двойных связей в рибофлавине, к нему могут присоединяться два атома водорода. При этом образуются восстановленные формы коферментов ФАД•Н2 . флавиновые дегидрогеназы катализируют окисление ограниченного числа субстратов. - третий тип - кофермент Q или убихинон, который может дегидрировать флавопротеиды и, присоединяя два атома водорода, переходить в гидрохинон. - четвертый тип - цитохромы, это белки хромопротеиды, в состав которых входит атом железа. За счет способности атома железа обратимо переходить из двух- в трехвалентное состояние обеспечивается перенос электронов по цепи цитохромов. |
6. Ферменты. Классификация (по строению, по типу катализируемой реакции). Специфичность действия. Зависимость скорости ферментативной реакции от температуры и рН. Ингибиторы ферментов. Виды ингибирования. Классификация и номенклатура ферментов Согласно международной классификации, принятой в 1961 году, все ферменты делятся на 6 классов по типу катализируемой реакции. Каждый класс делится на несколько подклассов. Классы: 1. оксидоредуктазы; 2. трансферазы; 3. гидралазы; 4. лиазы; 5. изомеразы; 6. лигазы (синтетазы). 1. Оксидредуктазы – ферменты, катализирующие окислительно-восстановительные реакции. Известно 480 этих ферментов, которые делятся на 17 подклассов. а) аэробные дегидрогеназы (оксидазы). Отщепляют водород от субстрата и переносят его на молекулу кислорода. Пр.: НАДФН2+О2= Н2О2+НАДФ. Если кислород непосредственно внедряется в субстрат, то ферменты – оксигеназы. Наибольшее значение имеют оксидазы аминокислот. б) анаэробные дегидрогеназы – катализируют перенос водорода от субстрата на любой другой акцептор, кроме кислорода. CH3CH2OH → СН3СН=О [над стрелочкой алкоголь-ДГ; под стрелочкой НАД → НАДН2 ; этанол превращается в этаналь]. в) цитохромы – это ферменты, переносящие электроны. г) пероксидазы – гемсодержащие оксидоредуктазы. Они отщепляют водород от субстрата и переносят его на Н2О2. Пр.: каталазная реакция. 2Н2О2 → 2Н2О+О2 [над стрелочкой - каталаза]. 2. Трансферазы – ферменты, переносящие группы атомов от одного субстрата к другому. При этом один субстрат донор, а другой – акцептор. В зависимости от природы переносимых групп трансферазы делят на 8 подклассов: - аминотрансферазы, переносят NH2; - метилтрансферазы, переносят CH3; - фосфотрансферазы, переносят PO3H2; - ацилтрнсферазы. Пр. переаминирование. [рис. Аланин + альфакетоглутаровая кислота под действием АлАТ и перидоксальфосфата получается ПВК и глутаминовая к-та].
3. Гидролазы – ферменты, катализирующие разрыв одинарных связей с участием воды, присоединяемой по месту разрыва связи. Т.е. они принимают участие в реакциях гидролиза. Все ферменты пищеварительного тракта относятся к гидролазам. Всего выделяют 460 гидролаз. В зависимости от типа разрываемых связей выделяют 11 подклассов: - эстеразы – разрывают сложно-эфирную связь. Пр.: триацилглицерид+ 3H2O=(липаза) глицерин+ 3С17H35COOH [рис. этого. Стрелочкой показать сложноэфирные связи]. - пептидазы – разрывают пептидную связь. Пр.: АЛА-ГЛИ+ H2O = (дипептидаза) АЛА+ГЛИ [рис. этого. Стрелочкой показать пептидную связь]. - гликозидазы – разрывают гликозидные связи. Пр.: мальтоза+ H2O=(мальтаза) 2глюкозы [рис. этого. Стрелочкой показать гликозидную связь]. 4) Лиазы. Эти ферменты осуществляют разрыв углеродных связей без участия воды. Выделяют: - декарбоксилазы – катализируют отщепление CO2. Пр.:
- альдолазы – катализируют расщепление связи между атомами углерода. Пр.: фруктозо-1,6-дифосфат (6 атомов С)= (альдолаза) фосфоглицериновый альдегид (3 атома С)+ дигидроксиацетонфосфат (3 атома С).
- гидратазы – разрыв двойной связи с присоединением воды по месту разрыва двойной связи.
6) Лигазы (синтетазы) – катализируют образование более сложных веществ из более простых. При этом требуется энергия из вне. Обязательно участие АТФ или других трифосфатов (УТФ, ЦТФ и т.д.). [Пр. Аспарагиновая к-та + аммиак + АТФ под действием аспарагинсинтетазы превращается в аспарагин + АМФ + неорганический фосфат +энергия].
Номенклатура ферментов 1) Существует тривиальная номенклатура – названия случайные, без системы и основания, например трипсин, пепсин, химотрипсин. 2) Рабочая номенклатура – название фермента составляется из названия субстрата или продукта реакции, типа катализируемой реакции и окончание –аза, например лактатдегирогеназа. 3) Систематическая, научная - L-лактат-НАД-оксидредуктаза. 4) Все ферменты имеют цифровой шифр, например ЛДГ - 1.1.1.27. Первая цифра говорит о типе катализируемой реакции, указывая на номер класса. Вторая уточняет действие фермента – номер подкласса. Третья указывает природу разрываемой связи в молекуле субстрата - подподкласс. Четвёртая – порядковый номер фермента Выделяют несколько видов специфичности: а) абсолютная специфичность. Фермент действует только на один единственный субстрат. Пр.: уреаза разрушает мочевину: NH2-CO-NH2 (над стрелкой уреаза, под – вода) 2NH3+ CO2. Аргиназа катализирует распад аргинина. б) групповая специфичность. Фермент действует на определённую связь в разных субстратах. Пр.: пептидазы разрывают пептидные связи [-NH-CH(R)-CO--NH-CH(R)-CO-]. Пепсин действует только на связи, образованные карбоксильной группой ароматических АК (ФЕН, ТИР, ТРИ). Эстеразы разрывают сложно-эфирную связь [-CO-NH-] в различных липидах. ликозидазы действуют на гликозидную связь. Действие ферментов, обладающих групповой специфичностью, позволяет организму содержать небольшое количество ферментов. в) стереоспецифичность. Фермент действует на определённый стереоизомер (D- и L-, цис- и транс-). Пр.: бутен-2-диовая кислота имеет 2 стереоизомера: транс-изомер или фумаровая к-та, и цис-изомер или малеиновая кислота. |
Фумараза действует
на фумаровую к-ту с превращением
последней в яблочную.
3) Влияние температуры (правило Вант-Гоффа). При увеличении температуры на 10 градусов скорость реакции увеличивается в 1,5-2 раза. Но для фермента это правило действует только до 40 градусов, т.к. дальше наступает тепловая денатурация фермента. Большинство ферментов в организме человека имеет оптимальную температуру 25-40 градусов [рис. графика: по оси х – температура, по у – процент активности. Рисуем горочку, оптимум – на 37-40°С]. Повышение активности фермента при увеличении температуры объясняется увеличением кинетической энергии реагирующих молекул, что приводит к увеличению числа столкновений между молекулами. При дальнейшем повышении температуры энергия становится чрезмерной, и внутри молекулы разрываются слабые связи – водородные, гидрофильные взаимодействия; происходит нарушение вторичной, третичной, четвертичной структуры фермента. Ряд ферментов термостабильны, например, гликопротеины. 4) Влияние рН. Для поддержания третичной или четвертичной структуры фермента часто может быть необходимо наличие заряда на группе, удаленной от области связывания субстрата. Если же заряд этой группы меняется, то может происходить частичное развертывание белковой цепи, или компактизация, или диссоциация (олигомерные белки). Поэтому при отклонении рН от оптимального значения, фермент может потерять свою нативную структуру, в результате чего не происходит полноценного связывания активного центра с субстратом. Также при изменении рН может происходить изменение заряда на субстрате. [рис. график. По х – рН, по у – процент активности. Рисуем горочку.] Пепсин – 1.5-2, амилаза слюны - 6.8-7.2, трипсин - 7.5-8.6. Для большинства ферментов оптимум рН лежит в среде, близкой к нейтральной. 5) Скорость ферментативной реакции прямо пропорциональна кол-ву фермента (для небиологических катализаторов такой зависимости нет). Недостаток фермента в живом организме, например при неполноценном питании, генетических нарушениях, приводит к уменьшению скорости превращения веществ и наоборот. 6) Ферменты являются регулируемыми катализаторами. Так под действием различных веществ (активаторов и ингибиторов) меняется скорость ферментативной реакции. Ингибирование ферментов. Ингибитор – это вещество, вызывающее специфическое снижение активности фермента. Следует различать ингибирование и инактивацию. Инактивация – это, например, денатурация белка в результате действия денатурирующих агентов. По прочности связывания ингибитора с ферментом ингибиторы делят на обратимые и необратимые. Необратимые ингибиторы прочно связаны и разрушают функциональные группы молекулы фермента, которые необходимы для проявления его каталитической активности. Все процедуры по очистке белка не влияют на связь ингибитора и фермента. Пр.: действие фосфорорганических соединений на фермент – холинэстеразу. Хлорофос, зарин, зоман и др. фосфорорганические соединения связываются с активным центром холинэстеразы. В результате происходит фосфорилирование каталитических групп активного центра фермента. В следствии молекулы фермента, связанные с ингибитором, не могут связываться с субстратом и наступает тяжелое отравление. Также выделяют обратимые игнибиторы, например прозерин для холинэстеразы. Обратимое ингибирование зависит от концентрации субстрата и ингибитора и снимается избытком субстрата. По механизму действия выделяют: - конкурентное ингибирование; - неконкурентное ингибирование; - субстратное ингибирование; - аллостерическое. 1) Конкурентное (изостерическое) ингибирование – это торможение ферментативной реакции, вызванное связыванием ингибитора с активным центром фермента. При этом ингибитор имеет сходство с субстратом. В процессе происходит конкуренция за активный центр: образуются фермент-субстратные и ингибитор-ферментные комплексы. E+SES EP E+P; E+I E. Пр.: сукцинатдегидрогеназная реакция [рис. COOH-CH2-CH2-COOH(над стрелкой СДГ, под ФАДФАДН2) COOH-CH=CH-COOH]. Истинным субстратом этой реакции является сукцинат (янтарная к-та). Ингибиторы: малоновая к-та (COOH-CH2-COOH) и оксалоацетат (COOH-CO-CH2-COOH). [рис. фермента с 3 дырками+ субстрат+ ингибитор= комплекс ингибитора с ферментом]. Пр.: фермент холинэстераза катализирует превращение ацетилхолина в холин: (CH3)3-N-CH2-CH2-O-CO-CH3 (над стрелкой ХЭ, под – вода) CH3СOOH+(CH3)3-N-CH2-CH2-OH. Конкурентными ингибиторами являются прозерин, севин. 2) Неконкурентное ингибирование – торможение, связанное с влиянием ингибитора на каталитическое превращение, но не на связывание фермента с субстратом. В этом случае ингибитор может связываться и с активным центром (каталитический участок) и вне его. Присоединение ингибитора вне активного центра приводит к изменению конформации (третичной структуры) белка, вследствие чего изменяется конформация активного центра. Это затрагивает каталитический участок и мешает взаимодействию субстрата с активным центром. При этом ингибитор не имеет сходства с субстратом и это ингибирование нельзя снять избытком субстрата. Возможно образование тройных комплексов фермент-ингибитор-субстрат. Скорость такой реакции не будет максимальной. К неконкурентным ингибиторам относят:- цианиды. Они связываются с атомом железа в цитохромоксидазе и в результате этого фермент теряет свою активность, а т.к. это фермент дыхательной цепи, то нарушается дыхание клеток и они гибнут. - ионы тяжёлых металлов и их органические соединения (Hg, Pb и др.). Механизм их действия связан с соединением их с различными SH-группами. [рис. фермента с SH-группами, иона ртути, субстрата. Все это соединяется в тройной комплекс]. - ряд фармакологических средств, которые должны поражать ферменты злокачественных клеток. Сюда же относятся ингибиторы, использующиеся в сельском хозяйстве, бытовые отравляющие вещества. 3) Субстратное ингибирование – торможение ферментативной реакции, вызванное избытком субстрата. Происходит в результате образования фермент-субстратного комплекса, неспособного подвергаться каталитическому превращению. Его можно снять и уменьшить концентрацию субстрата. [рис. связывания фермента сразу с 2 субстратами]. 4) Аллостерическое ингибирование – торможение ферментативной реакции, вызванное присоединением аллостерического ингибитора в аллостерическом центре аллостерического фермента. Такой тип ингибирования характерен для аллостерических ферментов, имеющих четвертичную структуру. В качестве ингибиторов могут выступать метаболиты, гормоны, ионы металлов, коферменты. Механизм действия: а) присоединение ингибитора к аллостерическому центру; б) изменяется конформация фермента; в) изменяется конформация активного центра; г) нарушается комплиментарность активного центра фермента к субстрату; д) уменьшается число молекул ES; е) уменьшается скорость ферментативной реакции. [рис. фермент с 2 дырками, к одной аллостерический ингибитор и вторая меняет форму] К особенностям аллостерических ферментов относят ингибирование по отрицателтной обратной связи. A(E1)B(E2) C(E3) D (от D стрелочка к стрелке между А и В). D – метаболит, действующий как аллостерический ингибитор на фермент Е1. |
12 Структурная организация дыхательной цепи. Окислительное фосфорилирование. Сопряжение тканевого дыхания и окислительного фосфорилирования. Дыхательная цепь (ДЦ) (или Цепь Переноса Электронов – ЦПЭ, или Электрон-Транспортная Цепь – ЭТЦ). ДЦ – это конвейер по переносу электронов и протонов от восстановленного субстрата к кислороду. Компоненты ДЦ: 1. Пиридинзависимые ДГ (НАД-, НАДФ-зависимые). Рабочая часть – витамин РР (никотинамид).
НАД + 2Н+ + 2е ↔ НАД·Н2. 2. ФАД-зависимые ДГ (кофермент в ДЦ – ФМН, а акцептор электронов непосредственно от субстрата – ФАД. Рабочая часть – изоалоксазин.
[При восстановлении к атомам азота при двойных связях, отмеченных стрелками, присоединяется по атому водорода, а двойная связь перемещается на общую грань колец В и С.] . 3. Убихинон (Ko Q). Обладает о/в-свойствами благодаря кето-енольной таутомерии. 4. Цитохромы. Относятся к гемопротеинам, содержат атомы железа, переход степени (2↔3) окисления которого и обеспечивает транспорт электронов (протоны ими не транспортируются !!! ). В ДЦ цитохромы расположены в следующей последовательности: b - c1 - c - a - a3 . Совокупность цитохромов b и c1 называют КоQH-дегидрогеназой, т.к. они отщепляют атом водорода от убихинона (KoQ). Цитохромы а и а3 – цитохромоксидазой (т.к. способствуют переносу электронов на молекулярный кислород). Функционирование ДЦ. Субстрат·Н2 → НАД → ФМН → КоQ → 2b → 2c1 → 2c → 2a → 2a3 → O2 . [До KoQ включительно переносятся 2 протона и 2 электрона, а по цепи цитохромов – только 2 электрона]. Существует и укороченная ДЦ, в которой субстрат окисляется ФАД-зависимой ДГ, отдающей затем 2 протона и 2 электрона непосредственно на убихинон. Необходимо отметить, что АТФ выделяется на этапах: НАД→ФМН (в укороченной ДЦ эта молекула АТФ не выделяется!), b→c1 , a→a3. Вообще, молекула АТФ синтезируется если разница потенциалов между соседними компонентами цепи превышает 0,2 В, т.е. может выделиться энергия не менее 50 кДж/моль. Окислительное фосфорилирование (хемиосмотическая теория Митчелла, 1961) 1. Мембраны митохондрий непроницаемы для протонов. 2. В результате процессов окисления в митохондрии формируется протонный потенциал (электрохимический градиент протонов). 3. Диффузия протонов обратно на внутреннюю поверхность мембраны сопряжено с фосфорилированием, которое осуществляется АТФ-синтетазой. Сам процесс выглядит так: 1. НАД·Н-ДГ отдает пару электронов на ФМН-ДГ. Это позволяет ФМН принять пару протонов из матрикса с образованием ФМН·Н2. Пара протонов, принадлежащих НАД, выталкивается на цитоплазматическую поверхность внутренней мембраны митохондрий. 2. ФМН·Н2-ДГ выталкивает пару протонов на цитоплазматическую поверхность мембраны, а пару электронов отдает на убихинон (KoQ), который при этом получает способность присоединить пару электронов из матрикса с образованием KoQ·H2. 3. KoQ·H2 выталкивает пару протонов в цитоплазму, а электроны перебрасываются на кислород в матриксе с образованием воды. В итоге при переносе пары электронов из матрикса в межмембранное пространство перекачивается 6 протонов, что и ведет к созданию разницы потенциалов и разницы рН между поверхностями внутренней мембраны. 4. Разница потенциалов и разница рН обеспечивают движение протонов через протонный канал в обратном направлении. 5. Движение протонов ведет к активации АТФ-синтетазы и синтезу АТФ из АДФ и фосфата. Окислительное фосфорилирование – это процесс образования АТФ из АДФ и ФН за счет энергии транспорта электронов в дыхательной цепи. Возможно разобщение окислительного фосфорилирования, например, при повреждении внутренней мембраны митохондрий. При этом происходит свободное окисление без фосфорилирования (т.е. без синтеза АТФ), сопровождающееся пирогенным эффектом (локальным повышением температуры). Таким образом на митохондиальную мембрану действует, например, 2,4-динитрофенол. Энергия окисляющихся веществ используется клетками для синтеза АТФ из АДФ. Фосфорилирование АДФ в клетках происходит путем присоединения неорганического фосфата Н3РO4. Реакция идет с затратой энергии (рис. 5.2). Образующийся нуклеотид АТФ имеет две макроэргические связи (~) и используется в клетках как универсальный источник энергии для синтеза веществ и других видов работы (активный транспорт веществ через мембраны, мышечное сокращение и т.д.). При использовании АТФ в качестве источника энергии чаще всего происходит гидролиз только одной макроэргической связи, выделяется около 50 кДж/моль энергии и опять образуется АДФ. Содержание АТФ в организме человека невелико и составляет около 50 г. Учитывая, что клетки не способны накапливать АТФ, а расход энергии происходит постоянно, в организме также постоянно идет синтез АТФ из АДФ и Н3РO4. За сутки в организме человека может синтезироваться до 60 кг АТФ. Таким образом, фосфорилирование АДФ и последующее использование АТФ в качестве источника энергии образуют циклический процесс (цикл АДФ-АТФ). В зависимости от источника энергии, обеспечивающего присоединение фосфатного остатка, выделяют два типа фосфорилирования АДФ: окислительное и субстратное. |
10. Терминальные стадии биологического окисления. Цитохромы. Роль цитохромоксидазы в окислительно-восстановительных реакциях. Цитохромы – это ферменты, содержащие в своем составе ионы трехвалентного железа, которые, присоединяя водород, переходят в двухвалентную форму. Цитохромов несколько и они обозначаются латинскими буквами a, a-3 b, c. Цитохромы передают водород на молекулярный кислород, и образуется вода. Цитохромы. Относятся к гемопротеинам, содержат атомы железа, переход степени (2↔3) окисления которого и обеспечивает транспорт электронов (протоны ими не транспортируются !!! ). В ДЦ цитохромы расположены в следующей последовательности: b - c1 - c - a - a3. Совокупность цитохромов b и c1 называют КоQH-дегидрогеназой, т.к. они отщепляют атом водорода от убихинона (KoQ). Цитохромы а и а3 – цитохромоксидазой (т.к. способствуют переносу электронов на молекулярный кислород). Цитохромы — это гемопротеины, характерной особенностью которых является перенос электронов, сопряженный с обратным изменением степени окисления простетической группы. Это изменение окислительно-восстановительного состояния включает обратимое равновесие между Fe2+ и Fe3+ состояниями гема:
Цитохромы относятся к одноэлектронным окислительно-восстановительным соединениям. Они не могут принимать или отдавать водород, поэтому их называют переносчиками электронов. Цитохромы присутствуют во многих тканях животного, растительного и бактериального происхождения. Цитохромы подразделяются на цитохромы a, b, c и d в соответствии с положением их спектральных полос поглощения в восстановленном состоянии. Цитохромы а и а3 существуют и функционируют в виде единого прочного комплекса. Особенностью комплекса цитохрома а · а3 является наличие в нем меди, связанной с компонентом а3, необходимой для его функционирования. Перенос электронов комплексом а · а3 включает следующие реакции:
Цитохром а · а3 непосредственно реагирует с молекулярным кислородом воздуха, т. е. электроны передаются на кислород, переводя его в ионы (О-2). Далее ионы кислорода вступают во взаимодействие с протонами, образуя воду. Комплекс а · а3 часто называют цитохромоксидазой. Тканевое дыхание можно наметить три основные стадии: 1) окислительное образование ацетилкофермента А (активная форма уксусной кислоты) из пировиноградной кислоты (промежуточный продукт расщепления глюкозы), жирных кислот и аминокислот; 2) разрушение ацетильных остатков в трикарбоновых кислот цикле с освобождением 2 молекул углекислого газа и 4 пар атомов водорода, частично акцептируемых коферментами никотинамидадениндинуклеотидом и флавинадениндинуклеотидом и частично переходящих в раствор в виде протонов; 3) перенос электронов и протонов к молекулярному кислороду (образование H2O) — процесс, катализируемый набором дыхательных ферментов и сопряжённый с образованием АТФ (так называемое окислительное фосфорилирование). Первые две стадии подготавливают третью, в ходе которой в результате последовательных окислительно-восстановительных реакций происходит освобождение основной части энергии, вырабатываемой в клетке. При этом около 50% энергии в результате окислительного фосфорилирования запасается в форме богатых энергией связей АТФ, а остальная часть её выделяется в виде тепла.
2 стр. |
11.Структура и роль АТФ. Субстратное и окислительное фосфорилирование. Строение и биологическая роль АТФ. Аденозинтрифосфат или сокращенно АТФ – это универсальное энергетическое вещество организма. АТФ – нуклеотид, в состав молекулы которого входят азотистое основание – аденин, углевод – рибоза и три остатка фосфорной кислоты. Особенностью молекулы АТФ является то, что второй и третий остатки фосфорной кислоты присоединяются связью, богатой энергией, иначе называемоймакроэргической связью. Часто соединения, имеющие макроэргическую связь (а мы столкнемся с ними в процессе изучения предмета) обозначатся термином «макроэрги» или макроэргические вещества. Строение АТФ можно отразить схемой: ^ Аденин – рибоза – Ф.К. – Ф.К. – Ф.К. аденозин. При использовании АТФ в качестве источника энергии обычно происходит отщепление путем гидролиза последнего остатка фосфорной кислоты. ^ АТФ + Н2О → АДФ + Н3РО4 + энергия. В физиологических условиях, то есть при условиях, которые имеются в живой клетке, расщепление моля АТФ сопровождается выделением 10 – 12 ккал энергии (43 -50 кДж). Главными потребителями энергии АТФ в организме являются реакции синтеза; мышечная деятельность; транспорт молекул и ионов через мембраны. Таким образом биологическая роль АТФ заключается в том, что это вещество в организме является своего родом эквивалентом ЕВРО или доллара в экономике. Основным поставщиком АТФ в клетке является тканевое дыхание – завершающий этап катаболизма, протекающий в митохондриях большинства клеток организма. Субстратное фосфорилирование Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ , получили название субстратного фосфорилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель ( НАД*Н2 , восстановленный ферредоксин ) переносит электроны на подходящий эндогенный акцептор электрона ( пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (Н2). Согласно распространенным представлениям, наиболее древние формы жизни, источником энергии для которых служили реакции субстратного фосфорилирования, использовали органические соединения внешней среды одновременно по двум каналам: в качестве источника энергии и источника углерода. Постепенное исчерпание таких соединений из окружающей среды поставило организмы перед двумя проблемами: поиском новых источников энергии и новых источников углерода. В первом случае это привело к использованию энергии света, во втором - к использованию углекислоты. Окислительное фосфорилирование. Особенности субстратного и коферментного фосфорилирования. Окислительное фосфорилирование – это использование энергии, выделяющейся при окислении органич 939f52gj ских веществ, для синтеза АТФ. Окислительное фосфорилирование бывает 2 типов – субстратное и коферментное. При субстратном фосфорилировании электроны, отщепленные от данного вещества, затем передаются на это же вещество; однако при этом энергия в молекуле перераспределяется таким образом, что выделяется энергия, идущая на синтез АТФ. Субстратное фосфорилирвание идет в ходе гликолиза; в результате субстратного фосфорилирования выделяется мало энергии. При коферментном фосфорилировании электрон отщепляется от молекулы органического вещества и передается в цепь переносчиков электронов. В процессе передачи электрона от одного переносчика другому он постепенно теряет энергию, и она используется для синтеза АТФ. В итоге электрон передается на кислород. Коферментное фосфорилирование осуществляется на внутренней мембране митохондрий. ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ - это синтез АТФ из аденозиндифосфата и неорганического фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении органических веществ в в процессе клеточного дыхания. СУБСТРАТНОЕ ФОСФОРИЛИРОВАНИЕ - это синтез АТФ, не связанный с электрон-транспортной системой, при котором остаток фосфорной кислоты (Н2РО3) переносится на АДФ от высокоэнергетического (фосфорилированного) соединения. Для ряда анаэробов (осуществляющих брожение) является единственным способом получения энергии. Субстратное фосфорилирование АДФ идет за счет энергии макроэргических связей некоторых соединений (например, метаболитов гликолиза – 1,3-бисфосфоглицерата и фосфоенолпирувата; сукцинил-КоА, креатинфосфата и др.). Этот процесс может происходить как в матриксе митохондрий, так и в цитоплазме клеток независимо от присутствия кислорода. Используется реже, чем окислительное фосфорилирование АДФ.
Окислительное фосфорилирование АДФ – превращение АДФ в АТФ происходит с использованием энергии переноса электронов от органических веществ к кислороду. Энергию для окислительного фосфорилирования поставляют окислительно-восстановительные реакции. Процесс может происходить только в аэробных условиях с участием ферментов цепи переноса электронов (ЦПЭ) и АТФ-синтазы. Окислительное фосфорилирование АДФ – основной механизм синтеза АТФ в организме. Оно происходит в митохондриях, которые являются основными поставщиками АТФ и могут рассматриваться как “энергетические станции” клетки. Митохондрии представляют собой небольшие органеллы овальной формы (рис. 5.3), их количество в клетке может достигать 2000. Митохондрии защищены двумя мембранами: наружной и внутренней. Внутренняя мембрана имеет многочисленные глубокие складки (гребневидные выросты), называемые кристами, которые значительно увеличивают ее поверхность. |
7. Строение ферментов. Формирование активного центра у простых и сложных ферментов. Механизм действия. Роль витаминов в функционировании ферментов. Строение ферментов. В пространственной структуре фермента условно выделяют ряд участков, которые выполняют соответствующие им функции. Активный центр (АЦ) – участок в молекуле фермента, где происходит связывание и химическое превращение субстрата (S). Субстрат – вещество, подвергающееся химическому превращению (например, для фермента лактатдегидрогеназы (ЛДГ) субстратом будет молочная кислота). В активном центре выделяется контактный участок и каталитический участок. Контактный участок – это место активного центра, в котором происходит связывание фермента с субстратом по принципу комплементарности, т.е. именно контактный участок обеспечивает специфическое сродство субстрата ферменту. Образовавшийся комплекс носит название фермент-субстратный комплекс. Каталитический участок (центр) – это место в активном центре фермента, где происходит химическое превращение субстрата [рис. изображён фермент-субстратный комплекс, а именно контактный участок, каталитический участок, активный центр и субстрат]. Если фермент – сложный белок, то обычно простетическая часть находится тоже в активном центре и участвует в формировании активного центра. Активный центр занимает небольшую часть молекулы фермента, обычно располагается в углублении, и в его образовании участвует небольшое число аминокислотных остатков (до 20). Аминокислотные остатки могут быть удалены друг от друга, но при формировании пространственной структуры фермента они располагаются в области активного центра. В формировании активного центра могут участвовать остатки, несущие следующие функциональные группы: NH2 (ЛИЗ, АРГ), COOH (ГЛУ, АСП), OH (СЕР, ТРЕ), SH (ЦИС), имидазольное кольцо (ГИС). В качестве единиц, участвующих в формировании активного центра, могут выступать кофакторы - ионы металлов (Cu2+, Fe2+ и т.д.), а также коферменты. В сложном ферменте АК-остатки активного центра создают условия для правильной его конформации и помогают кофакторам в связывании, ориентации, а, следовательно, и в превращении субстрата. Боковые группы остальных аминокислот не участвуют в образовании активного центра, но обеспечивают правильную пространственную конформацию активного центра и влияют на его реакционную способность. Ряд ферментов могут содержать аллостерический центр. [рис. фермента с аллостерическим и активным центрами] Эти ферменты относят к аллостерическим ферментам. К аллостерическому центру присоединяются различные вещества, отличные по строению от субстрата. Эти вещества могут изменять конформацию активного центра, т.е. влиять на связывание и превращение субстрата, они называются аллостерическими эффекторами. Все аллостерические эффекторы делятся на положительные – активаторы, и отрицательные – ингибиторы. Строение коферментов. Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами: - ковалентными связями; - ионными связями; - гидрофобными взаимодействиями и т.д. Один кофермент может быть коферментом для нескольких ферментов. Многие коферменты являются полифункциональными (например, НАД, ПФ). В зависимости от апофермента зависит специфичность холофермента. Все коферменты делят на две большие группы: витаминные и невитаминные. Коферменты витаминной природы – производные витаминов или химические модификации витаминов. 1 группа: тиаминовые – производные витамина В1. Сюда относят: - тиаминмонофосфат (ТМФ); - тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) или кокарбоксилаза; - тиаминтрифосфат (ТТФ).
ТПФ имеет наибольшее биологическое значение. Входит в состав декарбоксилазы кетокислот: ПВК, -кетоглутаровая кислота. Этот фермент катализирует отщепление СО. Кокарбоксилаза участвует в транскетолазной реакции из пентозофосфатного цикла. 2 группа: флавиновые коферменты, производные витамина В2. Сюда относят: - флавинмононуклеотид (ФМН); - флавинадениндинуклеотид (ФАД). Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД. [рис. изоалоксазиновое кольцо соединено с ребитолом, ребитол с фосфорной к-той, а фосфорная к-та – с АМФ]
ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. [рис. COOH-CH2-CH2-COOH (над стрелкой – СДГ, под – ФАД и ФАДН2) COOH-CH=CH-COOH]. Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН2. Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах.
3 группа: пантотеновые коферменты, производные витамина В3 – пантотеновой кислоты. Входят в состав кофермента А, НS-КоА. Этот кофермент А является коферментом ацилтрансфераз, вместе с которой переносит различные группировки с одной молекулы на другую.4 группа: никотинамидные, производные витамина РР - никотинамида:
Представители: - никотинамидадениндинуклеотид (НАД); - никотина мидадениндинуклеотидфосфат (НАДФ). Коферменты НАД и НАДФ являются коферментами дегидрогеназ (НАДФ-зависимых ферментов), например малатДГ, изоцитратДГ, лактатДГ. Участвуют в процессах дегидрирования и в окислительно-восстановительных реакциях. При этом НАД присоединяет два протона и два электрона, и образуется НАДН2.
Рис. рабочей группы НАД и НАДФ: рисунок витамина РР, к которому присоединяется один атом Н и в результате происходит перегруппировка двойных связей. Рисуется новая конфигурация витамина РР + Н+]
5 группа:
пиридоксиновые, производные витамина
В6. [рис. пиридоксаля..Пиридоксаль+
фосфорная к-та= пиридоксальфосфат]
- пиридоксин; - пиридоксаль; - пиридоксамин. Эти формы взаимопревращаются в процессе реакций. При взаимодействии пиридоксаля с фосфорной кислотой получается пиридоксальфосфат (ПФ). ПФ является коферментом аминотрансфераз, осуществляет перенос аминогруппы от АК на кетокислоту – реакция переаминирования. Также производные витамина В6 входят как коферменты в состав декарбоксилаз АК. Коферменты невитаминной природы – вещества, которые образуются в процессе метаболизма. 1) Нуклеотиды – УТФ, УДФ, ТТФ и т.д. УДФ-глюкоза вступает в синтез гликогена. УДФ-гиалуроновая к-та используется для обезвреживания различных веществ в трансверных реакциях (глюкоуронил трансфераза). 2) Производные порфирина (гем): каталаза, пероксидаза, цитохромы и т.д. 3) Пептиды. Глутатион – это трипептид (ГЛУ-ЦИС-ГЛИ), он участвует в о-в реакциях, является коферментом оксидоредуктаз (глутатионпероксидаза, глутатионредуктаза). 2GSH(над стрелкой 2Н) G-S-S-G. GSH является восстановленной формой глутатиона, а G-S-S-G – окисленной. 4) Ионы металлов, например Zn2+ входит в состав фермента АлДГ (алкогольдегидрогеназы), Cu2+ - амилазы, Mg2+ - АТФ-азы (например, миозиновой АТФ-азы). Могут участвовать в: -присоединении субстратного комплекса фермента; -в катализе; -стабилизация оптимальной конформации активного центра фермента; -стабилизация четвертичной структуры.
|
14. Микросомальное окисление. Локализация и значение процесса в обмене веществ. Роль цитохрома Р450. микросомального окисления. Она содержит цитохромы Р-450 и b5. Эта система играет большую роль в обезвреживании многих токсинов и лекарств путем их гидроксилирования. R-H → R-OH. При этом часто образуется пероксид водорода, который разрушается каталазой. Микросомальное окисление. На его долю приходится 5-10 % кислорода, поступающего в организм. АТФ во внемитохондриальном окислении никогда не образуется. Существуют 2 типа внемитохондриального окисления. Окисление оксидазного типа. Ферменты - оксидазы. По строению являются металлофлавопротеинами. Содержат металлы с переменной валентностью - железо(Fe), медь(Cu), молибден(Mo). Находятся оксидазы в пероксисомах - особых образованиях эндоплазматического ретикулюма, а также в наружной мембране митохондрий. Отнимают водород от субстрата и передают его на кислород с образованием Н2О2 - перекиси водорода. Оксидаз в клетке немного, и субстратов для них тоже мало. Эти ферменты обычно обладают широкой субстратной специфичностью и невысокой активностью. Моноаминоксидазы (МАО) - окисляют гормон адреналин и некоторые биогенные амины. Диаминоксидазы (ДАО) - окисляют гистамин и другие диамины и полиамины. Оксидаза L-аминокислот. Оксидаза D-аминокислот. Ксантиноксидаза - окисляет пуриновые азотистые основания (аденин и гуанин) с участием воды. Биологическое значение окисления по оксидазному типу: окисляются трудноокисляемые циклические вещества; быстрая инактивация БАВ - биологически активных веществ; образующаяся Н2О2 оказывает бактерицидное действие - разрушает клеточные мембраны фагоцитированных бактериальных клеток. Окисление оксигеназного типа. Происходит на мембранах эндоплазматического ретикулума и во внутренней мембране митохондрий. Ферменты - оксигеназы. Они активируют молекулу кислорода, а затем внедряют один или два атома кислорода в молекулу окисляемого вещества. Оксигеназы, включающие один атом кислорода в окисляемое вещество, называются монооксигеназами (гидроксилазами). Оксигеназы, включающие два атома кислорода в окисляемое вещество, называются диаксигеназами. Оксигеназы работают в составе мультиферментного комплекса, встроенного в мембрану. Мультиферментный комплекс состоит из 3-х компонентов. Флавиновые дегидрогеназы. Содержат ФАД. Наиболее обычный субстрат для них - НАДФН2. Железо-серный белок. Содержит негеминовое железо с переменной валентностью. Цитохром Р450. Его строение отличается от строения цитохромов цепи митоходриального окисления. Мультиферментный комплекс формирует цепь переноса электронов и протонов, в конце ее происходит активация кислорода. Активированный кислород присоединяется к активному центру цитохрома Р450, и на него переносятся электроны, а затем этот кислород включается в молекулу субстрата. Примеры реакций оксигеназного типа окисления. Монооксигеназы (гидроксилазы) включают в окисляемое вещество один атом кислорода из молекулы О2, а другой атом кислорода соединяется с двумя атомами водорода, отнятыми у какого-либо восстановителя (обычно - НАДФН2, реже - у других: например, у витамина "С"). Источник водорода - НАДФН2. Аскорбиновая кислота (витамин "С"), как восстановитель, участвует в работе пролингидроксилазы; этот фермент включает гидроксильные группы в аминокислотные остатки пролина в молекуле проколлагена. Поэтому зрелый коллаген приобретает большую механическую прочность. При недостатке (дефиците) витамина "С" в организме эти реакции протекают медленнее - соединительная ткань становится менее прочной. Высокоспецифичные гидроксилазы, включающие ОН-группу в молекулу холестерина, принимают участие в образовании стероидных гормонов (половых, коры надпочечников) - эти реакции идут во внутренней мембране митохондрий. Малоспецифичные гидроксилазы. Наиболее часто окисляют циклические гидрофобные вещества, чужеродные для организма - ксенобиотики (лекарственные препараты; компоненты растений; вещества, которыми загрязнена окружающая среда). Биологический смысл этих реакций: гидроксилирование ксенобиотика делает его более растворимым, ускоряется его выведение из организма - многие из этих реакций протекают в печени (детоксикация). Диоксигеназы включают оба атома молекулы кислорода в окисляемое вещество. Таким путем окисляются циклические трудноокисляемые структуры, реакции идут с разрывом цикла. Активные формы кислорода. Кислород - потенциально опасное вещество. Молекулярный кислород О2 и кислород в составе молекулы Н2О - стабильные соединения, химически инертные. Они стабильны, потому что внешняя электронная орбита укомплектована электронами. Полное восстановление кислорода происходит на заключительной стадии МтО. Химические соединения, в составе которых кислород имеет промежуточную степень окисления, имеют высокую реакционную способность и называются активными формами кислорода. Эти соединения образуются: в монооксигеназных реакциях - супероксид-анион, который может отщепляться от активного центра цитохрома Р450; в оксидазных реакциях - образуется пероксидный анион (присоединяя протоны, превращается в перекись водорода); в дыхательной цепи МтО может происходить утечка электронов от каких-либо переносчиков - это явление наблюдается при реоксигенации ишемических тканей; активные формы кислорода могут легко переходить друг в друга. Примеры таких переходов изображены на рисунках. Донорами электронов могут являться металлы переменной валентности. Наиболее химически активным соединением является гидроксильный радикал - сильнейший окислитель. Время его жизни очень короткое (1 миллиардная доля секунды), но за это время он мгновенно вступает в цепные окислительные реакции в месте своего образования. Супероксиданион и перекись водорода - более стабильные вещества, могут диффундировать от места образования, проникать через мембраны клеток. Гидроксильный радикал может вызывать неферментативное окисление аминокислотных остатков в белке (гистидина, цистеина, триптофана) - так могут инактивироваться многие ферменты, нарушается работа транспортных белков, происходит нарушение структуры азотистых оснований в нуклеиновых кислотах - страдает генетический аппарат клеток. Окисляются жирные кислоты в составе липидов клеточных мембран - нарушаются физико-химические свойства мембран - проницаемость, рецепторная функция, работа мембранных белков. Особенностью реакций с участием гидроксильных радикалов является их цепной характер (гидроксильный радикал не исчезает, а передается). Активные формы кислорода опасны для клетки, поэтому существуют защитные механизмы (например, в фагоцитах количество образовавшейся перекиси водорода увеличивается только в момент фагоцитоза). Инактивация активных форм кислорода в клетках происходит под действием антиоксидантной системы. Цитохром Р450 – гемопротеин, содержит простетичесую группу – гем, и имеет участки связывания для О2 и субстрата (ксенобиотика). Молекулярный О2 в триплетном состоянии инертен и не способен взаимодействовать с орган соединениями. Чтобы сделать О2 реакционоспособным необходимо его превратить в синглетный, используя ферментные системы его восстановления (моноксигеназная система). |
15. Углеводы. Классификация. Моно-, олиго-, полисахариды (гомо- и гетерополисахариды). Строение. Биологическая роль. Катаболизм в желудочно-кишечном тракте. Углеводами называются альдегиды или кетоны многоатомных спиртов или их производных. Углеводы классифицируются на: 1. моносахариды – не подвергаются гидролизу: - триозы (глицеральдегид, диоксиацетон); - тетрозы (эритроза); - пентозы (рибоза, дезоксирибоза, рибулоза, ксилуоза); - гексозы (глюкоза, фруктоза, галактоза). 2. олигосахариды – состоят из 2–12 моносахаридов, соединенных между собой гликозидными связями (мальтоза – 2 глюкозы, лактоза – галактоза и глюкоза, сахароза – глюкоза и фруктоза); 3. полисахариды: - гомополисахариды (крахмал, гликоген, клетчатка); - гетерополисахариды (сиаловая кислота, нейраминовая кислота, гиалуроновая кислота, хондроитинсерная кислота, гепарин). Углеводы входят в состав клеток животных (до 2%) и растений (до 80%). Биологическая роль: 1. энергитическая. На долю углеводов приходится около 70% всей калорийности. Суточная потребность для взрослого человека – 400-500 г. При окислении 1 г углеводов до воды и углекислого газа выделяется 4,1 ккал энергии; 2. структурная. Углеводы используются как пластический материал для образования структурно-функциональных компонентов клеток. К ним относятся пентозы нуклеиновых кислот, углеводы гликопротеинов, гетерополисахариды межклеточного вещества; 3. резервная. Могут откладываться про запас в печени, мышцах в виде гликогена; 4. защитная. Гликопротеины принимают участие в образовании антител. Гетерополисахариды участвуют в образовании вязких секретов (слизи), покрывающих слизистые оболочки ЖКТ, дыхательных и мочеполовых путей. Гиалуроновая кислота играет роль цементирующего вещества соединительной ткани, препятствующего проникновению чужеродных тел; 5. регуляторная. Некоторые гормоны – гликопротеины (гипофиза, щитовидной железы); 6. участвуют в процессах узнавания клеток (сиаловая и нейраминовая кислоты); 7. определяют группу крови, входя в состав оболочек эритроцитов; 8. участвуют в процессах свертываемости крови, входя в состав гликопротеинов крови, фибриногена и протромбина. Так же предупреждает свёртываемость крови, входя в состав гепарина. Строение углеводов Моносахариды - производные многоатомных спиртов, содержащие карбонильную группу. В зависимости от положения в молекуле карбонильной группы моносахариды подразделяют на альдозы и кетозы. Альдозы содержат функциональную альдегидную группу -НС=О, тогда как кетозы содержат кетонную группу >С=О. Название моносахарида зависит от числа составляющих его углеродных атомов, например альдотриозы, кетотриозы, альдогексозы, кетогексозы и т.д. Моносахариды по строению можно отнести к простым углеводам, так как они не гидролизуются при переваривании, в отличие от сложных, которые при гидролизе распадаются с образованием простых углеводов. Строение основных представителей моносахаридов показано на рис. 7-1. В пище человека (фрукты, мёд, соки) содержится небольшое количество моносахаридов, в основном глюкоза и фруктоза. ПЕРЕВАРИВАНИЕ УГЛЕВОДОВ Метаболизм (обмен) углеводов в организме человека состоит в основном из следующих процессов: 1. Расщепление в пищеварительном тракте поступающих с пищей полисахаридов и дисахаридов до моносахаридов. Всасывание моносахаридов из кишечника в кровь. 2. Синтез и распад гликогена в тканях, прежде всего в печени. 3. Гликолиз. Понятие «гликолиз» означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО2. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин «аэробный гликолиз» в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты (лактата). 4. Аэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь (пентозный цикл). 5. Взаимопревращение гексоз. 6. Аэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза – пирувата. 7. Наконец, важным является процесс глюконеогенеза, или образование углеводов из неуглеводных продуктов. Такими продуктами являются в первую очередь пировиноградная и молочная кислоты, глицерин, аминокислоты и ряд других соединений. |
17. Распад глюкозы в аэробных условиях. Эффект Пастера. Окислительное декарбоксилирование пировиноградной кислоты и цикл трикарбоновых кислот. Последовательность реакций. Связь с процессом тканевого дыхания. Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки. 1. Этапы аэробного гликолиза. В аэробном гликолизе можно выделить 2 этапа. 1 Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ. 2 Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ 2. Реакции аэробного гликолиза. Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата. Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы. Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. Данная реакция, так же, как гексокиназная, практически необратима, и, кроме того, она наиболее медленная из всех реакций гликолиза. Реакция, катализируемая фосфофруктокиназой, определяет скорость всего гликолиза, поэтому, регулируя активность фосфофруктокиназы, можно изменять скорость катаболизма глюкозы.Фруктозо-1,6-бисфосфат далее расщепляется на 2 триозофосфата: глицеральдегид-3-фосфат и дигидроксиацетонфосфат. Реакцию катализирует фермент фруктозобисфосфатальдолаза, или просто альдолаза. Этот фермент катализирует как реакцию альдольного расщепления, так и альдольной конденсации, т.е. обратимую реакцию. Продукты реакции альдольного расщепления - изомеры. В последующих реакциях гликолиза используется только глицеральдегид-3-фосфат, поэтому дигидроксиацетонфосфат превращается с участием фермента триозофосфатизомеразы в глицероальдегид-3-фосфат (рис. 7-35). В описанной серии реакций дважды происходит фосфорилирование с использованием АТФ. Однако расходование двух молекул АТФ (на одну молекулу глюкозы) далее будет компенсировано синтезом большего количества АТФ. Превращение глицеральдегид-3-фосфата в пируват. Эта часть аэробного гликолиза включает реакции, связанные с синтезом АТФ. Наиболее сложной в данной серии реакций является реакция превращения глицеральдегид-3-фосфата в 1,3-бисфосфоглицерат. Это превращение - первая реакция окисления в ходе гликолиза. Реакцию катализирует глицеральдегид-3-фосфатдегидрогеназа, которая является NAD-зависимым ферментом. Значение данной реакции заключается не только в том, что образуется восстановленный кофермент, окисление которого в дыхательной цепи сопряжено с синтезом АТФ, но также и в том, что свободная энергия окисления концентрируется в макроэргической связи продукта реакции. Глицеральдегид- 3 -фосфатдегидрогеназа содержит в активном центре остаток цистеина, сульфгидрильная группа которого принимает непосредственное участие в катализе. Окисление глицеральдегид-3-фосфата приводит к восстановлению NAD и образованию с участием Н3РО4 высокоэнергетической ангидридной связи в 1,3-бисфосфоглицерате в положении 1. В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ. Фермент, катализирующий это превращение, назван по обратной реакции фосфоглицераткиназой (киназы называются по субстрату, находящемуся в уравнении реакции по одну сторону с АТФ). Данная серия реакций показана на рис. 7-36. Образование АТФ описанным способом не связано с дыхательной цепью, и его называют субстратным фосфорилированием АДФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. В следующих реакциях происходят внутримолекулярные перестройки, смысл которых сводится к тому, что низкоэнергетический фосфоэфир переходит в соединение, содержащее высокоэнергетический фосфат. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. Название дегидратирующего фермента дано по обратной реакции. В результате реакции образуется замещённый енол - фосфоенолпируват. Образованный фосфоенолпируват - макроэргическое соединение, фосфатная группа которого переносится в следующей реакции на АДФ при участии пируваткиназы (фермент также назван по обратной реакции, в которой происходит фосфорилирование пирувата, хотя подобная реакция в таком виде не имеет места). Превращение фосфоенолпирувата в пируват - необратимая реакция. Это вторая в ходе гликолиза реакция субстратного фосфорилирования. Образующаяся енольная форма пирувата затем неферментативно переходит в более термодинамически стабильную кетофор-му.Эффект Пастера. Это снижение потребления глюкозы и прекращение продукции молочной кислоты клеткой в присутствии кислорода. Биохимический механизм эффекта заключается в конкуренции за пируват между пируватдегидрогеназой, превращающей пируват в ацетил-S-КоА, и лактатдегидрогеназой, превращающей пируват в лактат. Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс». На I стадии этого процесса пируват теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидролипоилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением. На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е2. При участии фермента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2дигидролипоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+. Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, дигидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 коферментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, липоамид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД). Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки. Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом: Пируват + НАД+ + HS-KoA = Ацетил-КоА + НАДН + Н+ + СO2. Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима. Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток. Клинические аспекты метаболизма пирувата. Арсенат, а также ионы ртути образуют комплексы с —SH-группами липоевой кислоты и ингибируют пируватдегидрогеназу; при недостаточном содержании тиамина в диете активность пируватдегидрогеназы снижается и пируват может накапливаться. Недостаток тиамина возникает у алкоголиков с нарушенным режимом питания; при введении им глюкозы может происходить быстрое накопление пирувата и лактата, приводящее к лактатацидозу, нередко с летальным исходом. У больных с наследственной недостаточностью пируватдегидрогеназы также может развиваться лактатацидоз, особенно после глюкозной нагрузки. Зарегистрированы мутации практически всех ферментов углеводного метаболизма, и в каждом случае их следствием является заболевание человека. Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл, цикл лимонной кислоты) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ. Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др. У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.
|
||
16. Анаэробный распад углеводов в тканях. Последовательность реакций. Регуляция. Гликолитическая оксидоредукция. Молочнокислое и другие виды брожения. Значение анаэробного распада глюкозы в организме. Анаэробный процесс распада углеводов для мышц. Сущность анаэробного распада углеводов заключается в расщеплении активированной глюкозы(фосфоглюкозы) на 2 молекулы молочной кислоты. Образующаясяв ходе этого процесса энергия частично расходуется в виде тепла, частичнонакапливается (аккумулируется) в макроэргических соединениях типа АТФ. Пригликолизе образуются 2, а при гликогенолизе — 3 молекулы АТФ. Гликогенолизначинается с отщепления от гликогена под действием фермента фосфорилазы одной молекулы глюкозы в виде глюкозо-1-фосфата, который превращается (изомеризуется)в глюкозо-6-фосфат.Пригликолизе глюкоза гексокиназой при участии АТФ (как источника энергии) превращается в глюкозо-6-фосфат. Различия гликолиза и гликогенолиза существуют только на начальных стадиях, дообразования глюкозо-6-фосфорно- го эфира, с которого эти два процесса идутодинаково. В дальнейшем глюкозо-6-фосфат превращается во фруктозо-1,6-ди-фосфат, который под действием фермента альдолазы расщепляется на 2 молекулытриоз (моносахаридов, состоящих из 3 углеродных атомов) — фосфоглицериновый альдегид и фосфодиоксиацетон (см. стр. 134).В организме фосфодиоксиацетон способен превратиться в фосфоглицериновый альдегид. Такимобразом, можно говорить о дальнейшем распаде 2 молекул фосфоглицеринового альдегида. Следующий этап превращения является одним из важнейших процессов анаэробного распада углеводов — это окислительно-восстановительная реакция, в ходе которой образуютсядве молекулы 1,3-дифосфоглицериновой кислоты. Это соединение важно тем, что входе реакции оно накапливает энергию, которая идет на образование двух молекул АТФ. Существенным моментом реакции также является выделение 4 атомов водорода, которые участвуют в гликолизе на последнем этапе — восстанавливают пировиноградную кислоту до молочной (см. схему 2).1,3-Дифосфоглицериноваякислота отдает свою энергию на образование 2 молекул АТФ, а сама превращается в3-фосфоглицериновую кислоту. Процесс циклического восстановления и окисления НАД в реакциях анаэробного окисления глюкозы получил название гликолитическая оксидоредукция. В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение – анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности. Впервые биологическую природу брожения открыл в 60-х годах 19 в. гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов. Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктов — гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт. При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей. Поэтому натуральные вина содержат не более 15% спирта. Главное преимущество чистых культур дрожжей заключается в том, что брожение виноградного сока протекает и заканчивается быстро, а отсутствие посторонней микрофлоры позволяет получать вина хорошего вкуса и аромата (с хорошим «букетом»). По окончании брожения молодое вино стабилизируют и дают ему созреть. Эти процессы занимают несколько месяцев, а при изготовлении высококачественных красных вин — даже несколько лет. В течение первого года во многих красных винах происходит второе, спонтанное брожение — яблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным. Уксуснокислое брожение — биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затем — уксусная кислота. При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14,5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбоза — промежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива. Молочнокислое брожение — широко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий (семействоLactobacillaceae)лактоза расщепляется на составляющие ее гексозы — глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота). Маслянокислое брожение также широко встречается в природе. Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого брожения — азотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре. Многие из них являются анаэробами и относятся к роду Clostridium. Маслянокислое брожение — сложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктов — уксусная, молочная, пропионовая и другие кислоты. Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода. Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами. Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлоза — единственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу. |
||
|
||
|
||
3 стр. |
||
18. Цикл трикарбоновых кислот. Энергетический эффект. Его роль в обмене углеводов, липидов, аминокислот. Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл, цикл лимонной кислоты) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ. Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др. У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.
|
19. Гликоген. Особенности структуры и биологическое значение. Реакции синтеза и распада. Регуляция гликогенолиза и гликогенеза. Гликогеновые болезни. Метаболизм гликогена. Мобилизация гликогена (гликогенолиз). Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки. Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются. В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд. Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови "целенаправленно" поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь. В гликогенолизе непосредственно участвуют три фермента: 1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы. 2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и "открытая" доступная α1,6-гликозидная связь. 3. Амило-α1,6-глюкозидаза, ("деветвящий" фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы. Синтез гликогена. Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах. Накопление гликогена в мышцах отмечается в период восстановления после работы, особенно при приеме богатой углеводами пищи. В печени гликоген накапливается только после еды, при гипергликемии. Такие отличия печени и мышц обусловлены наличием различных изоферментов гексокиназы, фосфорилирующей глюкозу в глюкозо-6-фосфат. Гликогеновые болезни – это наследственные заболевания, обусловленные недостаточностью каких-либо ферментов, отвечающих за метаболизм гликогена. Могут быть нарушены обе стороны обмена: как синтез гликогена, так и его распад. Самый частый гликогеноз I типа или болезнь фон Гирке обусловлен аутосомно-рецессивным дефектом глюкозо-6-фосфатазы. Из-за того, что этот фермент есть только в печени и почках, преимущественно страдают эти органы, и болезнь носит еще одно название –гепаторенальный гликогеноз. Даже у новорожденных детей наблюдаются гепатомегалия и нефромегалия, обусловленные накоплением гликогена не только в цитоплазме, но и в ядрах клеток. Кроме этого, активируется синтез липидов с возникновением стеатоза печени. Так как фермент необходим для дефосфорилирования глюкозо-6-фосфата с последующим выходом глюкозы в кровь, у больных отмечается гипогликемия и, как следствие, ацетонемия, метаболический ацидоз, ацетонурия. Гликогеноз III типа или болезнь Форбса-Кори или лимит-декстриноз – это аутосомно-рецессивный дефект амило-α1,6-глюкозидазы, "деветвящего" фермента, гидролизующего α1,6-гликозидную связь. Болезнь имеет более доброкачественное течение, и частота ее составляет примерно 25% от всех гликогенозов. Для больных характерна гепатомегалия, умеренная задержка физического развития, в подростковом возрасте возможна небольшая миопатия. Еще два печеночных гликогеноза – гликогеноз IV типа (болезнь Андерсена), связанный с дефектом ветвящего фермента и гликогеноз VI типа (болезнь Херса), связанный с дефицитом печеночной фосфорилазы гликогена встречаются довольно редко. Мышечные гликогенозы. Для этой группы гликогенозов характерны изменения ферментов мышечной ткани. Это приводит к нарушению энергообеспечения мышц при физической нагрузке, к болям в мышцах, судорогам. Гликогеноз V типа (болезнь Мак-Ардля) – отсутствие мышечной фосфорилазы. При тяжелой мышечной нагрузке возникают судороги, миоглобинурия, хотя легкая работа не вызывает каких-либо проблем. Смешанные гликогенозы. Эти заболевания касаются и печени, и мышц, и других органов. Гликогеноз II типа (болезнь Помпе) – поражаются все гликогенсодержащие клетки из-за отсутствия лизосомальной (кислой) α-1,4-глюкозидазы, поэтому данная болезнь относится клизосомным болезням накопления. Происходит накопление гликогена в лизосомах и в цитоплазме. Заболевание составляет почти 10% всех гликогенозов и является наиболее злокачественным. Больные при отсутствии лечения умирают в раннем возрасте из-за кардиомегалии и тяжелой сердечной недостаточности. |
20. Глюконеогенез. Значение в организме и регуляция. Цикл Кори. Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пи-ровиноградная кислоты, так называемые гликогенные аминокислоты, гли-церол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот. Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие фермент. Глюконеогенез осуществляется в направлении, обратном гликолизу. Большинство стадий этих двух процессов совпадают и катализируются одинаковыми ферментами. Исключение — необратимые р-ции II-IV (см. схему в ст. Гликолиз), к-рые в глюконеогенезе протекают обходными путями. Так, синтез фосфоенол-пировиноградной к-ты из пировиноградной (р-ция IV) осуществляется след. образом: где АТФ-аденозинтрифосфат, АДФ-аденозиндифосфат, НАДН и НАД-соотв. восстановленная и окисленная формы кофермента никотинамидадениндинуклеотида, ГТФ - гуанозинтрифосфат, ГДФ-гуанозиндифосфат. Первая и вторая стадии этого процесса протекают в митохондриях. Образовавшаяся яблочная к-та способна проникать через мембрану митохондрий в цитоплазму и участвовать в дальнейших превращениях. У растений и бактерий обнаружены ферменты, осуществляющие синтез фосфоенолпиро-виноградной к-ты без промежут. стадий, а у нек-рых животных он протекает полностью в митохондриях, откуда эта к-та поступает в цитоплазму для участия в дальнейших р-циях глюконеогенеза. В цитоплазме может осуществляться также восстановительное карбоксилирование пировиноградной к-ты с образованием яблочной. Фруктозо-6-фосфат образуется в результате необратимого гидролиза фруктозо-1,6-дифосфата. Глюкозо-6-фосфат дефосфорилируется с образованием глюкозы или превращ. в глюкозо-1-фосфат-ключевое промежут. соед. в синтезе углеводов. Синтез одной молекулы глюкозы м. б. выражен суммарным ур-нием: 2СН3С(O)СООН + 2НАДН + 4АТФ + 2ГТФ -> -> С6Н12О6 + 2НАД + 4АДФ + 2ГДФ + 6Н3РО4. Кроме пировиноградной или молочной к-ты предшественниками глюкозы м. б. глицерин, а такжеаминокислоты, к-рые в результате превращений, происходящих в цикле трикарбоновых к-т и глиоксилатном цикле, образуют пировиноградную и фосфоенолпировиноградную к-ты. Растения и микроорганизмы могут синтезировать углеводы также из жирных к-т через ацетилкофермент А. Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках. Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках. цикл кори Начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу. Итак печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма. |
24. Липиды. Классификация. Строение. Биологическая роль. Нейтральные жиры, фосфолипиды, гликолипиды, холестерин, простагландины. Липиды – это сложные органические вещества биологической природы, не растворимые в воде, но растворимые в органических растворителях. Все липиды делятся на простые и сложные. Простые: триглицериды, стерины, стериды и воски. Сложные: фосфолипиды, гликолипиды. Фосфолипиды делятся на сфинголипиды и глицерофосфолипиды. К глицерофосфолипидам относятся: фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин, фосфатидилинозит и плазмогены (ацетальфосфатиды). К гликолипидам: цереброзиды, ганглиозиды, сульфатиды. Биологическая роль липидов: 1) структурная – входят в состав биомембран клеток (ФЛ, ГЛ, холестерин); 2) резервная – нейтральные жиры могут откладываться про запас в жировое депо; 3) энергетическая – при окислении 1 г липидов до воды и углекислого газа выделяется 9,3 ккал энергии. 4) механическая – входя в состав соединительной ткани, подкожной жировой клетчатки, липиды предохраняют внутренние органы от повреждения при механических травмах; 5) теплоизолирующая роль – входя в состав подкожной жировой клетчатки, липиды предохраняют органы от перегревания и переохлаждения; 6) транспортная – входя в состав биомембран клеток, липиды участвуют в транспорте веществ (катионов); 7) регуляторная – все стероидные гармоны являются липидами. Гармоноподобные вещества (простагландины и лейкотриены) образуются из липидов; 9. участвуют в передаче нервных импульсов; 10. липиды являются основным источником эндогенной виды. 11. растворяющая – желчные кислоты, являясь стеринами, участвуют в растворении жирорастворимых витаминов А, Д, Е и К; 12. питательная роль – с пищей в организм поступают незаменимые ВЖК, которые имеют 2 и более двойных связей. Триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимы для всасывания жирорастворимых витаминов. Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в транспорте жиров, жирных кислот и холестерина. Входят в состав всех клеточных мембран. Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран. Холестерин — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов. Простагландины — биологически активные вещества, представляющие собой производные полиненасыщенных жирных кислот, молекула которых содержит 20 углеродных атомов. Простагландины являются медиаторами с выраженным физиологическим эффектом. |
||
23. Патология углеводного обмена: лактазная недостаточность, галактоземия, фруктоземия, гликогенозы. Нарушения углеводного обмена могут быть на различных этапах обмена веществ. Основными показателями нарушения является изменение концентрации глюкозы в крови (гипер-, гипоглюкоземия) и появление глюкозы в моче (глюкозурия). Концентрация глюкозы в крови взрослого здорового человека в норме составляет 3,3-5,5 ммоль/л. Появление глюкозы в моче возможно в случае превышения величины почечного порога, который для глюкозы составляет 10 ммоль/л. Основными причинами развития нарушения углеводного обмена являются: 1. алиментарные. Употребление пищи, богатой углеводами, ведет к быстрому переполнению гликогенного резерва печени, мышц, развитию гиперглюкоземии, глюкозурии. При снижении двигательной активности происходит снижение окислительных процессов и усиление биосинтеза жиров в тканях, что ведет к развитию алиментарного ожирения; 2. при поражении слизистых оболочек ЖКТ. При этом в желудке нарушается образование HCl (гипохлоргидрия или ахлоргидрия), поступающие углеводы сбраживаются под влиянием ферментов микрофлоры с образованием лактата, а белки подвергаются гниению. Это создает благоприятные условия для развития микрофлоры и приводит к расстройству пищеварения в целом. При поражении слизистой тонкого кишечника нарушается гидролиз дисахаридов или всасывание продуктов гидролиза; 3. при поражении печени нарушается биосинтез и распад гликогена, глюконеогенез; 4. при поражении поджелудочной железы нарушается секреция ферментов (-амилаз, олиго-1,6-гликозидаз), участвующих в гидролизе крахмала и гликогена. Наиболее грозным заболеванием ПЖЖ является сахарный диабет. При этом поражаются В-клетки, они перестают вырабатывать гормон инсулин. Инсулин – единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. В случае недостаточной его выработки или отсутствия вообще происходит нарушение биоэнергетики клеток, органов и тканей. В этом случае интенсивному окислению подвергаются белки и липиды, что сопровождается избыточной продукцией аммиака и Ац-КоА. Для связывания токсичного аммиака отвлекаются кетокислоты (ЩУК и -кетоглутаровая) из ЦТК, их концентрация резко падает, что приводит к снижению интенсивности окислительных процессов. ЦТК не в состоянии окислить все молекулы ацетил-КоА, образование которых увеличивается с усилением окисления белков и липидов. Создаются условия для их конденсации с образованием кетоновых тел. При сахарном диабете в крови наблюдается гиперкетонемия (норма - до 0,1 г/л) и кетонурия. 2СН3-СОSKoA (это ацетил-КоА) (Ац-КоА-трансфераза) ацетоацетил-КоА (деацилаза, +Н2О, -HS-KoA) ацетоуксусная кислота. Ацетоуксусная кислота может превращаться в -гидроксимасляную кислоту, при этом НАДН2НАД. Также она может превращаться в ацетон с отщеплением СО2. В норме содержание кетоновых тел в крови здорового человека до 0,1 г/л. При поражении печени нарушается процесс биосинтеза и распада гликогена, процессы глюконеогенеза.Наследственные заболевания, как правило, связаны с нарушением синтеза ферментов, участвующих в метаболизме углеводов. Например, алактазия - неусвояемость углеводов молока (лактозы). Это связано с отсутствием фермента – лактазы, поэтому поступающие с молоком дисахариды не усваиваются. У детей проявляется в виде рвоты, тошноты, поноса, вздутия живота, происходит обезвоживание организма. Лечение: исключение лактозы из пищи и замещение на мальтозу, сахарозу, глюкозу.Другая группа заболеваний может быть связана с наследственными нарушениями обмена гликогена: 1. гликогенозы, связанные с недостаточным количеством ферментов, участвующих в распаде гликогена (болезнь Гирке, Кори); 2. агликогенозы – заболевания, связанные с нарушением синтеза гликогена (болезнь Льюиса. Андерсона и т.д.). Под лактазной недостаточностью понимают сниженную активность кишечной лактазы - фермента пристеночного пищеварения, расщепляющего дисахарид лактозу до моносахаров – глюкозы и галактозы. Фермент синтезируют зрелые энтероциты, расположенные на вершине кишечных ворсинок. Патогенез. В случае отсутствия или недостаточной концентрации лактазы нерасщепленная лактоза, обладая высокой осмотической активностью, задерживает воду в просвете кишечника, увеличивая объем кишечного содержимого. В нижних отделах тонкого и в толстом кишечнике происходит ее сбраживание кишечной микрофлорой с образованием большого количества газообразного водорода и органических кислот, рН кишечного содержимого смещается в кислую сторону, что приводит к значительному усилению перистальтики. Увеличение кишечного содержимого, большой объем газов и усиленная перистальтика вызывают развитие так называемой бродильной диареи, сопровождающейся болями в животе. Жидкий стул с низким рН приводит к мацерации кожи вокруг анального отверстия. Галактоземия (высокий уровень в крови углевода галактозы) вызывается недостатком галактозо-1-фосфат-уридилтрансферазы – одного из ферментов, необходимых для обмена галактозы. Это врожденное заболевание. рактически сразу после приема провоцирующей (лактозосодержащей) пищи. Сначала новорожденный кажется здоровым, но в течение нескольких дней или недель он теряет аппетит, возникают рвота и желтуха, прекращается нормальное развитие. Печень увеличивается, в моче появляются белок и аминокислоты, ткани отекают, организм задерживает воду. Если лечение начато поздно, дети остаются малорослыми и умственно отсталыми. У многих больных развивается катаракта. Фруктоземия – это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех сладких фруктах, ягодах и некоторых овощах, а также в меде). При фруктоземии в организме человека мало или практически нет ферментов (энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в расщеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть это заболевание). Мальчики и девочки болеют одинаково часто. Симптомы заболевания появляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также меда. Тяжесть проявления зависит от количества употребленных продуктов. Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) – развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) – развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) – может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека). Гликогенозы – это заболевания, обусловленные метаболическими нарушениями, которые приводят к чрезмерной концентрации гликогена или изменения его структуры. Гликоген представляет собой депо углеводородов, которые являются готовыми источниками для немедленного обеспечения энергией. Они расщепляются в печени, обеспечивая бесперебойное снабжение глюкозой мозга и эритроцитов. Для данной группы заболеваний свойственно накопление гликогена в органах и тканях. Гликогенозы относят кнаследственным заболеваниям, вызванных нарушением активности ферментов, участвующих в обмене гликогена. Кроме того, они влияют на образование различных метаболитов. Описано несколько сотен случаев этого заболевания. Распространенность его составляет 1:40000. По клиническим признакам различают три основные формы заболевания: 1печеночную; 2)мышечную; 3) генерализованную. |
||
22. Цикл пентозофосфатов. Значение в организме и взаимосвязь с другими видами обмена. Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) – окислительной и неокислительной. Пентозофосфатный путь представляет собой прямое окисление глюкозы и протекает в цитоплазме клеток. Наибольшая активность ферментов пентозофосфатного пути обнаружена в клетках печени, жировой ткани, коры надпочечников, молочной железы в период лактации, зрелых эритроцитах. Низкий уровень этого процесса выявлен в скелетных и сердечной мышцах, мозге, щитовидной железе, легких. Пентозофосфатный путь выполняет в организме две важнейшие метаболические функции: он является главным источником НАДФН для синтеза жирных кислот, холестерола, стероидных гормонов, микросомального окисления; в эритроцитах НАДФН используется для восстановления глутатиона – вещества, препятствующего пероксидному гемолизу; он является главным источником пентоз для синтеза нуклеотидов, нуклеиновых кислот, коферментов (АТФ, НАД, НАДФ, КоА-SН и др.). В пентозофосфатном пути можно выделить две фазы – окислительную и неокислительную. Исходным субстратом окислительной фазы является глюкозо-6-фосфат, который непосредственно подвергается дегидрированию с участием НАДФ-зависимой дегидрогеназы. Продукт реакции гидролизуется, а образующийся 6-фосфоглюконат дегидрируется и декарбоксилируется . Таким образом, происходит укорочение углеродной цепи моносахарида на один углеродный атом («апотомия»), и образуется рибулозо-5-фосфат. Неокислительная фаза пентозофосфатного пути начинается с реакций изомеризации. В ходе этих реакций одна часть рибулозо-5-фосфата изомеризуется в рибозо-5-фосфат, другая – в ксилулозо-5-фосфат . Следуюшая реакция протекает при участии фермента транскетолазы, коферментом которой является тиаминдифосфат (производное витамина B1). В этой реакции происходит перенос двухуглеродного фрагмента с ксилулозо-5-фосфата на рибозо-5-фосфат: Образовавшиеся продукты взаимодействуют между собой в реакции, которая катализируется трансальдолазой и заключается а переносе остатка дигидроксиацетона на глицеральдегид-3-фосфат. Таким образом, три молекулы пентозофосфатов в результате реакций неокислительной стадии превращаются в две молекулы фруктозо-6-фосфата и одну молекулу глицеральдегид-3-фосфата. Фруктозо-6-фосфат может изомеризоваться в глюкозо-6-фосфат, а глицеральдегид-3-фосфат может подвергаться окислению в гликолизе или изомеризоваться в дигидроксиацетонфосфат. Последний вместе с другой молекулой глицеральдегид-3-фосфата может образовывать фруктозо-1,6-дифосфат, который также способен переходить в глюкозо-6-фосфат. Посредством пентозофосфатного пути может происходить полное окисление глюкозо-6-фосфата до шести молекул СО2. Все эти молекулы образуются из С-1-атомов шести молекул глюкозо-6-фосфата, а из образовавшихся при этом шести молекул рибулозо-5-фосфата снова регенерируются пять молекул глюкозо-6-фосфата. |
||
25. Переваривание нейтральных жиров в ЖКТ. Всасывание продуктов переваривания. Ресинтез жиров в кишечнике. Транспортные формы липидов в крови. Липопротеины, их характеристика. Поступая с пищей, липиды в ротовой полости подвергаются только механической обработке. Липолитические ферменты в ротовой полости не образуются. Переваривание липидов будет происходить в тех отделах ЖКТ, где будут создаваться условия для эмульгирования и гидролиза, где будет оптимальная реакция среды для ферментов. Все эти условия у взрослого человека создаются в кишечнике. У детей оболочка желудка вырабатывает липазы. рН лежит в слабо кислой среде (рН=5,5). Под влиянием желудочной липазы расщепляются эмульгированные жиры молока.! !У взрослого липазы расщепляются эмульгированные жиры молока. У взрослого человека хотя и вырабатывается желудочная липаза, но она не активна, поскольку рН желудочного сока в норме лежит в резко кислой среде (рН=1,5-2,5)! Переваривание жиров пищи начинается в тонком отделе кишечника. В переваривании участвуют: - желчные кислоты, которые образуются в печени; - бикарбонаты и ферменты поджелудочной железы; - ферменты собственно слизистой оболочки желудка. При поступлении пищи из желудка в двенадцатиперстную кишку, слизистой последней начинают выделятся регуляторы: - химоденин; - секретин; - холецистокинин; - энтерокинин. Основную роль в переваривании пищи играют желчные кислоты, которые образуются в печени из холестерина. Выделение желчных кислот способствует: 1. эмульгированию жира; 2. активации панкреатических липаз, фосфолипаз; 3. способствуют всасыванию труднорастворимых в воде веществ: ВЖК, ХС, моношлицеридов, жирорастворимых витаминов. При эмульгировании жир дробится на мелкие капельки. Желчные кислоты обволакивают эти капельки, препятствуя тем самым их слиянию. Таким образом стабилизируется эмульсия жира, который будет подвергаться гидролизу под влиянием панкреатических липаз. В результате гидролиза пищевого жира образуются спирты, фосфаты, ВЖК, азотистые основания, АК и другие соединения. Необходимо отметить, что в расщеплении жиров принимают участие и кишечные липазы. Всасывание продуктов гидролиза жира имеет свои особенности. Легко всасываются простой диффузией в слизистую кишечника спирты, АК, фосфаты, короткоцепочечные ВЖК, азотистые основания. Труднорастворимые в воде продукты гидролиза (ВЖК, моноглицериды, холестерин, жирорастворимые витамины) всасываются только в комплексе с желчными кислотами. Эти комплексы называются холеиновыми. Механизм ресинтеза жира. 1-сначала продукты гидролиза (глицерин, ВЖК) активируются с использованием АТФ. Далее происходит последовательное ацилирование глицерина с образованием моно-, ди-, триацилглицеридов. Центральное место в синтезе жира в стенке кишечника занимает фосфатидная кислота. Из неё в стенке кишечника -> образуются простые и сложные жиры. После ресинтеза фосфолипиды, триацилглицеролы, холестерол и его эфиры упаковываются в особые транспортные формы липидов – липопротеины и только в такой форме они способны покинуть энтероцит. В кишечнике формируются два вида липопротеинов – хиломикроны и липопротеины высокой плотности. Транспортными формами являются липопротеины плазмы крови, которые относятся к свободным липопротеинам (ЛП). =ЛП транспортируют: ФЛ, ТГ, холестерин. Могут транспортировать некоторые жирорастворимые витамины (А,D,Е,К). Выделяют 4 класса транспортных ЛП, которые отличаются друг от друга по химическому составу, размером мицелл и транспортируемым липидам. Поскольку они имеют разную плотность и скорость оседания в растворе NaCl, их разделяют на следующие группы: =ХМ – хиломикроны. Они образуются в стенке тонкого отдела кишечника; =ЛПОНП – липопротеины очень низкой плотности - образуются в стенке кишечника и печени; =ЛПНП – липопротеины низкой плотности - образуются в стенке кишечника, печени и эндотелии капилляров из ЛПОНП под действием липопротеидлипазы; =ЛПВП – липопротеины высокой плотности – образуются в стенке тонкой кишки и печени. |
||
28. Холестерин. Структура и биологическое значение. Биосинтез. Значение определения холестерина в сыворотке крови для диагностики заболеваний. Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу. Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин - компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Холестерин содержится в составе липопротеинов либо в свободной форме, либо в виде эфиров с длинноцепочечными жирными кислотами . Он синтезируется во многих тканях из ацетил-CoA и выводится из организма желчью в виде свободного холестерола или солей желчных кислот. Холестерол является предшественником других стероидов, а именно кортикостероидов, половых гормонов , желчных кислот и витамина D. Он является соединением, типичным для метаболизма животных, и содержится значительных количествах в продуктах животного происхождения: яичном желтке, мясе, печени и мозге. Свободный холестерол удаляется из тканей при участии ЛПВП и транспортируется в печень, где превращается в желчные кислоты. Он является основным компонентом желчных камней, однако его главная роль в патологии состоит в том, что он служит фактором, вызывающим атеросклероз жизненно важных артерий головного мозга, сердечной мышцы и других органов. При коронарном атеросклерозе наблюдается высокая величина соотношения холестерол ЛПНП/холестерол ЛПВП в плазме. ФУНКЦИИ нах!!! Без холестерина невозможна нормальная работа жизненно важных органов и систем нашего организма. Он входит в состав клеточных мембран, обеспечивая их прочность и регулируя их проницаемость, а также оказывая влияние на активность мембранных ферментов. При непосредственном участии холестерина происходит выработка в организме витамина D (который играет ключевую роль в обмене кальция и фосфора), гормонов надпочечников (кортизола, кортизона, альдостерона), женских половых гормонов (эстрогенов и прогестерона), мужского полового гормона тестостерона. !!!! Высокие уровни холестерина могут вызывать: Атеросклероз — сужение просвета артерий или закупорка артерий; Более высокий риск коронарной болезни сердца — повреждение артерий, которые доставляют кровь и кислород к сердцу; Инфаркт миокарда — происходит, когда блокируется доступ крови и кислорода в области сердечной мышцы, как правило, сгустком (тромбом) в коронарной артерии. Это приводит к гибли сердечной мышцы. Стенокардия — боль или дискомфорт в груди, которая происходит, когда сердечная мышца не получает достаточное количество крови; Другие сердечно-сосудистые заболевания — болезни сердца и кровеносных сосудов; |
||
26. Жиры как источник энергии. Обмен жирных кислот в тканях. Бета-окисление. Последовательность реакций. Связь обмена жирных кислот с цитратным циклом и тканевым дыханием. Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется B-окисление. Реакции B-окисления происходят в митохондриях большинства клеток организма. ЭТАПЫ!!! Этапы окисления жирных кислот 1-- Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-S-КоА. Ацил-S-КоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты. 2-- Ацил-S-КоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином. На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I. (P.S. на случай. Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы). 3-- После связывания с карнитином жирная кислота переносится через мембрану транслоказой. Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-S-КоА который вступает на путь ?-окисления. 4-- Процесс собственно ?-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. |
||
|
||
29. Кетоновые тела, синтез, строение. Концентрация кетоновых тел в норме и при патологии(сахарный диабет), при голодании. Кетоновые тела – это общее понятие для трех продуктов обмена веществ, которые образуются в печени: ацетон, ацетоуксусная и бетаоксимасляная кислота.В норме кетоновые тела в общем анализе мочи отсутствуют. Хотя на самом деле за сутки с мочой выделяется незначительное количество кетоновых тел. - Кетоновые тела обнаруживаются в общем анализе мочи при нарушении обмена углеводов и жиров, которое сопровождается увеличением количества кетоновых тел в тканях в крови (кетонемия). Содержание в моче кетоновых тел называется кетонурией. Также кетоновые тела в общем анализе мочи появляются в следствие обезвоживании организма. Они обнаруживаются в моче при резком похудении, лихорадочных состояниях, голодании, тяжелых отравлениях с сильной рвотой и поносом. Синтез кетоновых тел. Во время высокого уровня окисления жирных кислот образуется большое количество ацетилКоА. Если в цикле Кребса его достаточно, то он идёт на синтез кетоновых тел, кетогенез. БИОСИНТЕЗ - Кетоновые тела: 1)-ацетоацетат -бетта-гидроксибутират (восстановленная форма ацетоацетата) -ацетон. -------------Формирование ацетоацетилКоА осуществляется путём конденсации двух молекул ацетилКоА в реакции, обратной тиолазной. 2) АцетоацетилКоА и ещё один моль ацетилКоА превращаются в бетта-гидрокси-бетта-метилглутарилКоА (ГОМГ-КоА) с помощью фермента ГОМГ-КоАсинтетазы. Этот фермент находится в большом количестве в печени. Небольшое количество ГОМГ-КоА покидает митохондрию. 3) затем с помощью ГОМГ-КоА редуктазы превращается в мевалонат, который является предшественником в синтезе холестерола). В митохондрии под действием ГОМГ-КоА лиазы ГОМГ-КоА превращается в ацетоацетат. Ацетоацетат может спонтанно декарбоксилироваться до ацетона или превращаться в бетта-гидроксибутират под действием бетта-гидроксибутиратДГ. Когда уровень гликогена в печени высок, то продукция бетта-гидроксибутирата возрастает. Когда использование углеводов низкое или недостаточное, то падает уровень ЩУК. Это в свою очередь ведёт к возрастанию освобождения кетоновых тел из печени для исползования их как топливо другими тканями. В ранних стадиях голдания, когда последние остатки жиров окислились, сердце и мышцы главным образом будут потреблять кетоновые тела для того, чтобы сохранить драгоценную глюкозу, которая необходима мозгу. Осложнения сахарного диабета. Кетоацидоз, так же, как и гипогликемия, относится к острым (развивающимся очень быстро) осложнениям диабета. Когда организму не хватает энергии, он начинает ее получать, расщепляя жиры. При расщеплении жиров в организме вырабатываются специальные вещества, называемые кетонами. Кетоны в свою очередь повышают кислотность крови, отсюда и получилось название кетоацидоз. |
27. Синтез высших жирных кислот и нейтральных жиров в организме. Особенности. Пути образования жиров из углеводов и аминокислот. Роль пентозофосфатного цикла в обеспечении синтеза жиров. Синтез липидов происходит в гладкой эндоплазматической сети. ( ИМЕННО НЕЙТРАЛЬНЫХ ЖИРОВ!) 1) Сначала происходит присоединение двух ацильных остатков к молекуле глицерофосфата, в результате этого процесса образуется фосфатидная кислота, которая является общим предшественником и нейтральных жиров, и фосфолипидов. 2) Далее, в ходе образования нейтральных жиров происходит отщепление фосфата от молекулы фосфатидной кислоты, образовавшийся при этом диацилглицерин еще раз ацилируется опять же с участием ацил-КоА и образуется нейтральный липид (триглицерид). --Активный синтез нейтральных липидов происходит в печени, слизистой оболочке кишечника, жировой ткани.-- 3) Фосфатидная кислота служит предшественником при синтезе фосфолипидов. При этом происходит присоединение соответствующего радикала к остатку фосфорной кислоты в составе фосфатидной кислоты. 4) - Синтез жирных кислот локализован на мембранах гладкого эндоплазматического ретикулума. Исходным продуктом этого синтеза является малонил-КоА, который образуется при карбоксилировании ацетил-КоА. Эта реакция называется гетеротрофной фиксацией СО2. СИНТЕЗ ЖИРНЫХ КИСЛОТ! ИМЕННО ЖИИИРНЫЫХ. Как вы.) Филипп ублюдок, зачем здесь это писать? 1)Начальным этапом синтез жирных кислот является конденсация малонил-КоА с ацетил-КоА, в результате которой образуется кетобутирил-КоА. 2)Кетобутирил-КоА восстанавливается до оксибутирил-КоА, который далее дегидратируется с образованием кротонил-КоА. 3)Кротонил-КоА восстанавливается до бутирил-КоА. А далее происходит конденсация образовавшегося бутирил-КоА со следующим ацетил-КоА. Таким образом, синтез жирных кислот носит циклический характер и представляет собой последовательность присоединений двухуглеродного остатка к растущей цепи с последующим восстановлением продукта конденсации. В каждом цикле происходят реакции восстановления с использованием NADPH + H+, одним из источников которого является пентозофосфатный путь окисления глюкозы, другим - малик-фермент. Реакции восстановления обеспечивают синтез насыщенного алифатического радикала жирных кислот.
4 стр. |
33 Образование и обезвреживание аммиака в организме. Орнитиновый цикл синтеза мочевины. Его роль и связь с другими метаболическими путями.
Орнитиновый цикл
Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота (рис. 9-15). Экскреция мочевины в норме составляет ∼25 г/сут.
При повышении количества потребляемых с пищей белков экскреция мочевины увеличивается. Мочевина синтезируется только в печени, что было установлено ещё в опытах И.Д. Павлова. Поражение печени и нарушение синтеза мочевины приводят к повышению содержания в крови и тканях аммиака и аминокислот (в первую очередь, глутамина и аланина).
В 40-х годах XX века немецкие биохимики Г. Кребс и К. Гензелейт установили, что синтез мочевины представляет собой циклический процесс, состоящий из нескольких стадий, ключевым соединением которого, замыкающим цикл, является орнитин. Поэтому процесс синтеза мочевины получил название "орнитиновый цикл", или "цикл Кребса-Гензелейта".
1. Реакции синтеза мочевины
Мочевина (карбамид) - полный амид угольной кислоты - содержит 2 атома азота. Источником одного из них является аммиак, который в печени связывается с диоксидом углерода с образованием карбамоилфосфата под действием карбамоилфосфатсинтетазы I (см. схему А ниже). Далее под действием орнитинкарбамоилтрансферазы карбамоильная группа карбамоилфосфата переносится на α-аминокислоту орнитин, и образуется другая α-аминокислота - цитруллин. В следующей реакции аргининосукцинатсинтетаза связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарную кислоту). Этот фермент нуждается в ионах Mg2+. В реакции затрачивается 1 моль АТФ, но используется энергия двух макроэргических связей. Аспартат - источник второго атома азота мочевины. Далее фермент аргининосукцинатлиаза (аргининосукциназа) расщепляет аргининосукцинат на аргинин и фумарат, при этом аминогруппа аспартата оказывается в молекуле аргинина (см. схему Б ниже).
Аргинин подвергается гидролизу под действием аргиназы, при этом образуются орнитин и мочевина. Кофакторами аргиназы являются ионы Са2+ или Мn2+. Высокие концентрации орнитина и лизина, являющихся структурными аналогами аргинина, подавляют активность этого фермента:
Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.
Первые две реакции процесса происходят в митохондриях гепатоцитов. Затем цитруллин, являющийся продуктом этих реакций, транспортируется в цитозоль, где и осуществляются дальнейшие превращения.
Суммарное уравнение синтеза мочевины:
СО2 + NH3 + Аспартат + 3 АТФ + 2 Н2О → Мочевина + Фумарат + 2 (АДФ + Н3Р04) + АМФ + H4P2O7.
Аммиак, используемый карбамоилфосфатсинтетазой I, поставляется в печень с кровью ворот-вены. Роль других источников, в том числе гсительного дезаминирования глутаминовой эты в печени, существенно меньше.
Аспартат, необходимый для синтеза аргининокцината, образуется в печени путём трансаминирования
аланина с оксалоацетатом. Алании поступает главным образом из мышц и клеток кишечника. Источником оксалоацетата, необходимого для этой реакции, можно считать превращение фумарата, образующегося в реакциях орнитинового цикла. Фумарат в результате двух реакций цитратного цикла превращается в оксалоацетат, из которого путём трансаминирования образуется аспартат (рис. 9-17). Таким образом, с орнитиновым циклом сопряжён цикл регенерации аспартата из фумарата. Пиру ват, образующийся в этом цикле из аланина, используется для глюконеогенеза.
Ещё одним источником аспартата для орнитинового цикла является Трансаминирование глутамата с оксалоацетатом.
2. Энергетический баланс процесса
В реакциях орнитинового цикла расходуются четыре макроэргических связи трёх молекул
АТФ на каждый оборот цикла. Однако процесс превращения аминокислот в безазотистые остатки и мочевину имеет пути компенсации энергозатрат:
при включении фумарата в ЦТК на стадии дегидрирования малата образуется NADH, который обеспечивает синтез 3 молекул АТФ (рис. 9-18);
при окислительном дезаминировании глу-тамата в разных органах также образуется NADH, соответственно - ещё 3 молекулы АТФ.
Затраты энергии происходят также и при трансмембранном переносе веществ, связанном с синтезом и экскрецией мочевины.Первые две реакции орнитинового цикла происходят в митохондриях, а последующие три - в цитозоле. Цитруллин, образующийся в митохондрии, должен быть перенесён в цитозоль, а орнитин, образующийся в цитозоле, необходимо транспортировать в митохондрию. Кроме того, в почках перенос мочевины из крови в мочу происходит путём активного транспорта за счёт градиента ионов натрия, создаваемого К+,Nа+-АТФ-азой, что тоже сопряжено с энергозатратами.
Полный набор ферментов орнитинового цикла есть только в гепатоцитах. Отдельные же ферменты орнитинового цикла обнаруживаются не только в печени, но и в других клетках. В энтероцитах, например, имеется карбамоилфосфат-синтетаза I и орнитинкарбамоилтрансфераза, следовательно, может синтезироваться цитруллин. В почках обнаружены аргининосукцинатсинтетаза и аргининосукцинатлиаза. Цитруллин, образовавшийся в энтероцитах, может поступать в почки и превращаться там в аргинин, который переносится в печень и гидролизуется аргиназой. Активность этих рассеянных по разным органам ферментов значительно ниже, чем в печени.
3. Биологическая роль орнитинового цикла Кребса-Гензелейта
Орнитиновый цикл в печени выполняет 2 функции:
превращение азота аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов, главным образом аммиака;
синтез аргинина и пополнение его фонда в организме.
Регуляторные стадии процесса - синтез карбамоилфосфата, синтез цитруллина и заключительная стадия, катализируемая аргиназой. Эффективность работы орнитинового цикла при нормальном питании человека и умеренных физических нагрузках составляет примерно 60% его мощности. Запас мощности необходим для избежания гипераммониемии при изменениях количества белка в пище. Увеличение скорости синтеза мочевины происходит при длительной физической работе или длительном голодании, которое сопровождается распадом тканевых белков. Некоторые патологические состояния, характеризующиеся интенсивным распадом белков тканей (сахарный диабет и др.), также сопровождаются активацией орнитинового цикла. При избыточном белковом питании количество ферментов орнитинового цикла в печени увеличивается, что приводит к интенсификации синтеза мочевины.

.
Белки. Уровни структурной организации
белковой молекулы. Связь структуры и
функций. Структура
белковых молекул отличается значительной
сложностью и своеобразной организацией.
Различают 4 уровня структурной
организации белка: первичную, вторичную,
третичную и четвертичную. ^ Первичная
структура –
это последовательность аминокислот
в полипептидной цепи, соединенных
пептидными связями. К настоящему
времени полностью расшифрована
первичная структура многих белков:
инсулина, гемоглобина, миоглобина,
трипсиногена, лизоцима и др. Установлены
не только межвидовые, но и выявляются
индивидуальные особенности первичной
структуры отдельных белков.
Последовательность аминокислот в
полипептидной цепи определяет
последующие уровни структурной
организации белка, его важнейшие
физико-химические, биологические
свойства и является уникальной в
каждом отдельном случае (закрепленной
генетически). ^ Вторичная
структура –
это конфигурация полипептидной цепи
в пространстве, образующаяся в
результате взаимодействий между
функциональными группами, входящими
в состав пептидного остова. Отдельные
участки полипептидной цепи существуют
в виде a -спирали, бета- структуры
(складчатого листа), нерегулярные
вторичные структуры (кольца, изгибы,
петли). Вторичная структура
характеризует организацию полипептидного
скелета. Внешне альфа-спираль похожа
на слегка растянутую спираль телефонного
шнура. Термин “альфа-спираль” предложил
Л. Полинг, открывший такую укладку в
кератине. На один виток спирали в
среднем приходится 3,6 аминокислотных
остатка, а шаг спирали составляет 0,54
нм. альфаспираль стабилизируется
(т.е. удерживается) с помощью большого
количества водородных связей, которые
образуются между атомами водорода и
атомами более электоотрицательного
кислорода - атомов, входящих в состав
пептидных групп. Водородные связи как
бы сшивают спираль, удерживая
полипептидную цепь в закрученном
состоянии. Некоторые аминокислоты в
силу строения их боковых групп
препятствуют спирализации цепи.
Например, пролин или оксипролин не
содержат атома водорода в пептидной
группе и, следовательно, не могут
образовывать водородные связи. Поэтому
участки полипептидной цепи, где есть
пролин или оксипролин не способны к
спирализации и полипептидная цепь
делает изгиб “шпильку”. Третичная
структура -
это способ укладки полипептидной цепи
в пространстве в виде компактной
упаковки, за счет связей между
радикалами. Эти взаимодействия могут
возникать между группами, расположенными
на значительном расстоянии друг от
друга и полипептидная цепь, многократно
изгибаясь, складываясь, образует
глобулы или фибриллы, В поддержании
третичной структуры важную роль играют
слабые, но многочисленные водородные
связи, ионные и гидрофобные взаимодействия,
а также сильные дисульфидные связи. а)
Дисульфидные
связи возникают
между молекулами цистеина, расположенными
на различных участках полипептидной
цепи (идет окислительно-восстановительный
процесс). б) Ионные
взаимодействия возможны
между различными участками полипептидной
цепи, имеющими разноименно заряженные
группы. Этот вид взаимодействия
возможен между моноаминодикарбоновыми
кислотами (асп, глу), боковые цепи
которых имеют отрицательный заряд и
диаминомонокарбоновыми аминокислотами
(лизин, аргинин), боковые цепи которых
имеют положительный заряд.
в) Гидрофобные
взаимодействия Полипептидная
цепь укладывается таким образом, что
гидрофильные боковые группы (R- группы)
аминокислот обращены наружу, а
гидрофобные располагаются внутри.
Гидрофобные группировки, испытывая
отвращение к воде, стремясь избежать
соприкосновения с ней, теснее сближаются
друг с другом и взаимодействуют между
собой. Третичная
структура
- уникальное для каждого белка
расположение в пространстве полипептидной
цепи, зависящее от количества и
чередования аминокислот, т.е.
предопределенное первичной структурой.
Благодаря наличию третичной структуры
определяется форма белковой молекулы,
характерная для каждого белка и
необходимая для проявления его
специфических, биологических свойств. По
форме белковых молекул
белки бывают двух типов: фибриллярные (нитевидные)
полипептидные цепи, они расположены
параллельно друг другу, глобулярные,
в которых полипептидные цепи плотно
свернуты и образуют компактные
структуры округлой формы - глобулы.
Примером фибриллярных белков являются
белки соединительных тканей коллаген,
эластин. Типичными глобулярными
белками являются гемоглобин, миоглобин.
Некоторые белки могут существовать
как в глобулярной, так и в фибриллярной
форме. Например, сократительный белок
мышц актин. Характерным глобулярным
белком является миоглобин, содержащийся
в мышцах. В молекуле миоглобина имеется
одна полипептидная цепь, состоящая
из 153 аминокислотных остатков и ядра
гема. Эта полипептидная цепь очень
компактно упаковывается, образуя
глобулу. Основная функция миоглобина
- связывание кислорода, в отличие от
гемоглобина он в 5 раз быстрее связывает
кислород. В этом кроется большой
биологический смысл, поскольку
миоглобин находится в глубине мышечной
ткани (где низкое парциальное давление
кислорода). Жадно связывая кислород,
миоглобин создает кислородный резерв,
который расходуется по мере необходимости,
восполняя временный недостаток
кислорода. Белковые
модули (домены) Обычно
белки, образованные одной полипептидной
цепью, представляют собой компактное
образование, каждая часть которого
не может функционировать и существовать
отдельно, сохраняя прежнюю структуру.
Однако, в некоторых случаях, при большом
содержании аминокислотных остатков
(более 200), в трехмерной структуре
обнаруживается не одна, а несколько
независимых компактных областей одной
полипептидной цепи. Эти фрагменты
полипептидной цепи, сходные по свойствам
с самостоятельными глобулярными
белками, называются модулями или доменами.
Например, в дегидрогеназах два домена,
один связывает НАД+ и этот домен
сходен по строению у всех НАД-зависимых
дегидрогеназ, а другой домен связывает
субстрат и отличается по структуре у
разных дегидрогеназ. Синтаза жирных
кислот, представляющая одну полипептидную
цепь, имеет 7 доменов, для катализа 7
реакций. Предполагается, что домены
синтазы некогда объединились в один
белок в результате слияния генов.
Соединение модулей (доменов) в один
белок способствует быстрому появлению
и эволюции новых функциональных
белков. ^ Активный
центр белка и взаимодействие его с
лигандом. Активный центр белка – это
центр связывания белка с лигандом. На
поверхности глобулы образуется
участок, который может присоединять
к себе другие молекулы называемые лигандами.
Активный центр белка формируется из
боковых групп аминокислот, сближенных
на уровне третичной структуры. В
линейной последовательности пептидной
цепи они могут находиться на расстоянии
значительно удаленном друг от друга.
Белки проявляют высокую специфичность
при взаимодействии с лигандом. Высокая
специфичность взаимодействия белка
с лигандом обеспечивается
комплементарностью структуры активного
центра белка структуре
лиганда.Комплементарность – это
пространственное и химическое
соответствие взаимодействующих
молекул. Центры связывания белка с
лигандом часто располагаются между
доменами (например, центр связывания
трипсина с его лигандом имеет 2 домена
разделенных бороздкой). В основе
функционирования белков лежит их
специфическое взаимодействие с
лигандами. 50000 индивидуальных белков,
содержащих уникальные активные центры,
способные связываться только со
специфическими лигандами и, благодаря
особенностям строения активного
центра, проявлять свойственные им
функции. Очевидно, в первичной структуре
содержится информация о функции
белков. ^ Четвертичная
структура -
это высший уровень структурной
организации, возможный не у всех
белков. Под четвертичной структурой
понимают способ укладки в пространстве
полипептидных цепей и формирование
единого в структурном и функциональном
отношениях макромолекулярного
образования. Каждая отдельно взятая
полипептидная цепь, получившая
название протомера или субъединицы,
чаще всего не обладает биологической
активностью. Эту способность белок
приобретает при определенном способе
пространственного объединения входящих
в его состав протомеров. Образовавшуюся
молекулу принято называть олигомером
(мультимером). Четвертичную структуру
стабилизируют нековалентные связи,
которые возникают между контактными
площадками протомеров, которые
взаимодействуют друг с другом по типу
комплементарности. К белкам, имеющим
четвертичную структуру, относятся
многие ферменты (лактатдегидрогеназа,
глутаматдегидрогеназа и др.), а также
гемоглобин, сократительный белок мышц
миозин. Одни белки имеют небольшое
число субъединиц 2 – 8, другие сотни и
даже тысячи субъединиц. Например,
белок вируса табачной мозайки имеет
2130 субъединиц. Типичным примером
белка, имеющего четвертичную структуру,
является гемоглобин. Молекула
гемоглобина состоит из 4 субъединиц,
т. е. полипептидных цепей, каждая из
которых связана с гемом, из них 2
полипептидные цепи называются -2афьла
и -2бета Они различаются первичной
структурой и длиной полипептидной
цепи. Связи, образующие четвертичную
структуру менее прочные. Под влиянием
некоторых агентов происходит разделение
белка на отдельные субъединицы. При
удалении агента субъединицы могут
вновь объединиться и биологическая
функция белка восстанавливается. Так
при добавлении к раствору гемоглобина
мочевины он распадается на 4 составляющие
его субъединицы, при удалении мочевины
структурная и функциональная роль
гемоглобина восстанавливается. Биологическая
роль белков: 1. каталитическая (выполняют
ферменты); 2. структурная, т.е. белки
являются основным компонентом клеточных
структур; 3. регуляторная (выполняют
белки-гормоны); 4. рецепторная, т.е.
рецепторы клеточных мембран имеют
белковую природу; 5. транспортная –
белки участвуют в транспорте липидов,
токсических веществ, кислорода и т.д.;
6. опорная – выполняет белок коллаген;
7. энергетическая. Заключается в том,
что при окислении 1г белка выделяется
17,6 кДж (4,1ккал) энергии; 8. сократительная
– её выполняют белки актин и миозин;
9. генно-регуляторная – её выполняют
белки гистоны, участвуя в регуляции
репликации; 10. имуннологическая – её
выполняют белки антитела; 11.
гемостатическая – участвуют в
свёртывании крови, препятствуют
кровотечению; 12. антитоксическая, т.е.
белки связывают многие токсические
вещества (особенно соли тяжёлых
металлов) и препятствуют развитию
интоксикации в организме.
НАД
+ 2Н+ + 2е ↔ НАД·Н2. 2. ФАД-зависимые ДГ
(кофермент в ДЦ – ФМН, а акцептор
электронов непосредственно от субстрата
– ФАД. Рабочая часть – изоалоксазин.
- ферменты,
отщепляющие воду – реакция дегидратации.
При этом образуется двойная связь. 5)
Изомеразы – ферменты, катализирующие
реакции изомеризации и обеспечивающие
внутримолекулярную перестройку.
В стереоспецифичности выделяют
оптическую специфичность – избирательное
действие ферментов на оптические
изомеры. Например, под действием ЛДГ
разрушается только L-форма молочной
к-ты.