- •Строительство и навигация сложнопрофильных скважин
- •Isbn__________________
- •Оглавление
- •2. Основные определения и понятия
- •3. Причины и механизм самопроизвольного
- •6.1. Расчет трехинтервального профиля с участком стабилизации зенитного угла
- •6.2. Расчет трехинтервального профиля с участком
- •6.3. Расчет четырехинтервального профиля
- •6.4. Проектирование и расчет профилей
- •6.4.2 Расчет профиля гс пространственного типа (Устье не лежит в плоскости горизонтального ствола)
- •7. Бурение боковых стволов
- •Возвращение к старым скважинам
- •Д обыча из незатронутых эксплуатацией пластов
- •Скважины-кандидаты для бурения боковых стволов
- •О птимизация отдачи пласта
- •Вскрытие удаленных структур
- •Опыт выбора скважин для бурения боковых стволов
- •Способы бурения боковых стволов
- •Анализ пропускных характеристик скважины
- •Технология бурения боковых стволов
- •Бурение с коротким радиусом кривизны
- •Применение гибких труб
- •Система viper с колонной гибких труб
- •Системы для забуривания нескольких боковых стволов
- •Перспективы
- •8. Технические средства управления искривлением
- •9. Обоснование режимных параметров
- •10. Особенности транспорта шлама по горизонтальному стволу скважины
- •11. Ориентирование отклоняющих компоновок
- •11.1. Забойное ориентирование в вертикальном стволе
- •11.2. Забойное ориентирование в наклонном стволе
- •11.3. Навигационные системы
- •11.4. Бурение с применением телеметрических систем
- •11.4.1. Каналы связи телеметрических систем в бурении
- •11.4.2. Телеметрические системы ведущих производителей
- •11.4.2.1 Тс с проводным каналом связи
- •1 1.4.2.2. Тс с электромагнитным каналом связи
- •11.4.2.3. Тс с гидравлическим каналом связи
- •11.4.2.4. Тс с комбинированным каналом связи
- •11.4.2.5. Аппаратно-программный комплекс контроля процесса
- •12. Роторные управляемые системы
- •12.1. Бурение с использованием гидравлических
- •12.1.1. Эффективность бурения с гидравлическими забойными
- •12.1.2. Ограничения в системах с забойными двигателями
- •12.2. Роторные управляемые системы для
- •12.2.1. Роторные управляемые системы с радиальным смещением
- •12.2.1.1. «Автотрак» – «Бейкер-Хьюз Интек»
- •5 Генератор
- •6 Пульсатор
- •7 Масляный насос
- •12.2.1.2. «Пауэрдрайв» – «Шлюмберже»
- •Большой радиус
- •12.2.1.3. «Веллдиректор» и «Экспрессдрилл» – «Нобль Дриллинг»
- •12.2.1.3.1. «Веллдиректор»
- •12.1.3.2. «Экспрессдрилл»
- •12.2.2. Роторные управляемые системы с позиционированием долота
- •12.2.2.1 «Геопилот» – «Сперри-Сан»
- •12.2.2.2. Агс («Аутомэйтед Гайданс Систем») – кдал («Кембридж Дриллинг Авто Лтд»)
- •12.2.3. «Смарт слив» – «ротари стирабл тулз»
- •12.2.2.4. Дарт – «андергейдж»
- •12.3. Роторные управляемые системы для бурения
- •12.3.1. Прямолинейность траектории вертикальных скважин
- •12.3.2. «Вертитрак» – «Бейкер-Хьюз Интек»
- •12.3.3. «Пайэр в» – «Шлюмберже»
- •12.4. Перспективы применения роторных
- •13. Определение пространственного положения ствола скважины
- •14. Особенности строительства кустов скважин
- •15. Некоторые технологические и экологические требования при бурении наклонных и горизонтальных скважин
- •16. Буровые промывочные жидкости
- •16.1. Назначение, функции, типы бпж и требования к ним
- •16.2. Физико-химические основы получения и управления свойствами промывочных жидкостей
- •16.2.1. Основные свойства буровых промывочных жидкостей и характеризующие их параметры
- •16.2.2. Методы и средства регулирования свойств буровых промывочных жидкостей
- •16.2.3. Виды промывочных жидкостей и условия их применения.
- •16.2.4 Особенности регулирования свойств бпж в различных условиях
- •16. 3. Методы и средства очистки бпж
Способы бурения боковых стволов
Когда бурение боковых стволов признано оптимальным техническим решением, встает вопрос, какую бурильную колонну следует использовать - из обычных или из гибких труб. На платформах, где нет буровых установок, забуривание из НКТ или бурение с депрессией на продуктивный пласт экономически эффективно проводить с помощью гибких труб. Бурение с депрессией способствует сохранению коллекторских свойств продуктивных пластов и увеличению механической скорости бурения.
Большинство боковых стволов из старых скважин бурят с длинным (более 150 м) или средним (60-150 м) радиусами кривизны, используя обычные бурильные трубы. Однако наметилась тенденция увеличения числа боковых стволов с малым радиусом кривизны (12-30 м). Для бурения ответвлений с коротким радиусом кривизны необходимы КНБК с шарнирными элементами. Эти боковые стволы особенно эффективны в устойчивых породах, где можно обойтись без спуска обсадных труб и дополнительного внутрискважинного оборудования для заканчивания. Технические средства бурения по короткому радиусу требуют меньшей протяженности искривленной части ствола скважины, как при работе с обычными, так и с гибкими трубами. Это позволяет забуриваться ниже внутрискважинного оборудования или размещать как криволинейный, так и горизонтальный участки ответвления в продуктивном пласте, чтобы избежать проблем, связанных с вышележащими породами.
Растет популярность многоствольных новых скважин, когда из основного ствола скважины бурят несколько горизонтальных боковых стволов. Эта технология позволяет уменьшить число скважин на месторождении и сделать экономически эффективной разработку мелких месторождений. Уменьшение числа скважин значительно снижает затраты на оборудование устьев и вывод стояков на поверхность при подводном заканчивании морских скважин. С точки зрения геометрии, многоствольная скважина может просто иметь два противоположно направленных ответвления в одном продуктивном пласте для улучшения условий вскрытия, или ответвления имеют форму кисти, что позволяет вскрыть несколько пластов, расположенных на разных уровнях многопластового месторождения. Многоствольная конфигурация может применяться в одном пласте, чтобы увеличить площадь дренажа несколькими параллельными или расходящимися веерообразно боковыми стволами.
Анализ пропускных характеристик скважины
Рис. 22. Анализ пропускных характеристик скважины
В данном примере пропускные характеристики скважины (ПХС), отражаемые зависимостью между давлением на устье и дебитом, представлены кривыми для различного сечения канала НКТ. За счет увеличения диаметра НКТ можно значительно повысить дебит.
Технология бурения боковых стволов
Подготовка скважины к бурению боковых стволов может включать такие работы, как монтаж установки для капремонта, подъем НКТ с внутрискважинным оборудованием, задавка цемента в зону перфорации, чтобы безопасно провести очистку скважины от посторонних предметов и каротаж для оценки состояния обсадной колонны и привязки к геологическому разрезу за колонной. В зависимости от условий и конструкции скважины, возможны несколько вариантов проведения работ: от забуривания в открытом стволе до бурения из обсадной колонны через боковое окно, вырезанное фрезерами, опирающимися на уипсток, или из искусственного интервала открытого ствола, созданного фрезерованием всего поперечного сечения обсадной колонны.
Б
урению
боковых стволов обычно предшествует
спуск гироскопического инклинометра
и каротажных приборов для уточнения
пространственного положения обсадной
колонны и эксплуатационного объекта.
На основе этой информации выбирается
глубина фрезерования обсадной колонны
и забуривания бокового ствола. В выбранном
интервале проводится цементометрия, и
если цементное кольцо за колонной
плохого качества, то после фрезерования
старый цемент из открытого интервала
удаляют раздвижным расширителем, который
заодно увеличивает диаметр скважины.
Рис. 23. Фрезерование труб по периметру
С помощью специального спускаемого в скважину устройства на заданной глубине прорезается круговая щель в обсадной колонне и цементном камне за ней (А). В рабочем положении резцы выдвигаются из корпуса устройства, а в транспортном положении - упираются в пазы корпуса. Длина фрезеруемого участка колонны (В) зависит от таких факторов как: внутренний диаметр колонны и наружный диаметр ее муфт, диаметр долота и угол искривления корпуса забойного двигателя. Интервал открытого ствола, образованный в результате фрезерования (С), перекрывают цементным мостом (D) для забуривания бокового ствола (Е). Часть старой скважины ниже интервала забуривания остается изолированной от бокового ствола.
Если при забуривании из вертикального ствола ориентирование отклонителя выполняется с помощью магнитометра, то освобождают от обсадной колонны интервал порядка 18 м (рис. 23). Длина фрезеруемого участка может быть уменьшена, если для ориентирования КНБК используется гироскопический компас. Участок открытого ствола скважины перекрывают прочным цементным мостом. Чтобы избежать магнитных помех, мост разбуривают до глубины на 6 м выше подошвы открытого интервала. Недостатком метода фрезерования обсадных труб по всему сечению являются повышенные требования к прочности цементного моста для забуривания и трудности поиска головы нижней секции обсадной колонны, если туда потребуется войти после бурения бокового ствола. Во многих случаях механическая скорость бурения ограничивается условиями выноса шлама из скважины, а для горизонтального участка проблема выноса шлама становится еще сложнее. Конструкция современных инструментов для фрезерования предусматривает образование мелкой, не формирующей клубков стружки, легко удаляемой из скважины. При фрезеровании предпочтительней промывать скважину полимерными, а не глинистыми буровыми растворами. Растворы на углеводородной основе вообще не рекомендуется применять для фрезерования.
Рис. 24. Вырезание окна
Операции по вырезанию окна в обсадной колонне начинаются со спуска и ориентирования извлекаемого уипстока создающего отклоняющее усилие на фрезеры (А). После фиксации уипстока якорем производится срезание удерживающей шпильки, и первый фрезер вырезает в колонне окно размером в несколько дюймов (В). Следующий фрезер выполняет основной объем работы по вырезанию окна и спускается вместе с эллипсоидными фрезерами, которые расширяют окно и выравнивают его кромки (С). После окончания вырезания окна приступают к забуриванию ответвления (D). Уипсток используется, чтобы направить КНБК и оборудование для заканчивания скважины в ответвление (Е). Когда работы в ответвлении закончены, уипсток можно извлечь, освободив доступ к нижележащим пластам (I и G).
Альтернативой фрезерованию всего поперечного сечения труб является вырезание окон в обсадной колонне. Это требует установки ориентированного уипстока и фрезерования окна в несколько этапов (рис. 24). После того, как уипсток установлен в нужном направлении, срезается шпилька, соединяющая его с фрезером первого этапа. Начинают вращать бурильную колонну, и твердосплавные резцы наконечника фрезера врезаются в стенку обсадной колонны. На следующем этапе окно в колонне прорезается специальным долотом, которое отжимается наклонной плоскостью уипстока в сторону стенки обсадной колонны и породы за нею. Окно расширяют и выравнивают его края с помощью конического фрезера, над которым прямо под УБТ устанавливают один или два фрезера эллипсоидной формы.
В сравнении с вырезанием окон фрезерование обсадной колонны по всему поперечному сечению имеет ряд преимуществ: исключается необходимость использования гироскопического компаса, имеется возможность начинать набор кривизны ближе к объекту эксплуатации, фрезерование можно выполнить за одно долбление. С другой стороны, при вырезании окон используется уипсток, обеспечивающий принудительное отклонение, но требующий нескольких спусков гироскопического компаса для ориентирования уипстока и КНБК. Кроме того, вырезание окон требует нескольких долблений различными фрезерами, а набор кривизны приходится начинать выше, чтобы разместить соответствующие элементы КНБК.
Какой бы способ зарезки ни применялся, после выхода в породу за колонной появляется возможность дополнительного выбора. Кроме стандартного искривления по среднему радиусу, существует несколько новых методов, которые могут повысить эффективность бурения боковых стволов. Бурение с коротким радиусом кривизны, использование колонны гибких труб и многоствольные скважины - все эти варианты нуждаются в тщательном экономическом анализе (рис. 26).
