- •Общие сведения
- •Основы клеточной теории
- •Общие сведения
- •Основы клеточной теории
- •История
- •14. Этапы биосинтеза белка
- •Способы бесполого размножения
- •2) Спорообразование
- •Способы полового размножения
- •20. Гаметогенез и оплодотворение
- •28. Борьба за существование в природе
- •Способы достижения биологического прогресса
- •33. Теории происхождения жизни на Земле
- •41, Древнейшие люди
- •Где жили древнейшие люди
- •Внешность древнейших людей
- •География расселения древнейших людей
- •44. Понятие об экологических факторах среды, их классификация
14. Этапы биосинтеза белка
Наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов.
Генетический код. Аминокислотная последовательность в молекуле белка зашифрована в виде нуклеотидной последовательности в молекуле ДНК и называется генетическим кодом. Участок молекулы ДНК, ответственный за синтез одного белка, называется геном.
Характеристика генетического кода.
1. Код триплетен: каждой аминокислоте соответствует сочетание из 3 нуклеотидов. Всего таких сочетаний — 64 кода. Из них 61 код смысловой, т. е. соответствует 20 аминокислотам, а 3 кода — бессмысленные, стоп-коды, которые не соответствуют аминокислотам, а заполняют промежутки между генами.
2. Код однозначен — каждый триплет соответствует только одной аминокислоте.
3. Код вырожден — каждая аминокислота имеет более чем один код. Например, у аминокислоты глицин — 4 кода: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ, чаще у аминокислот их 2—3.
4. Код универсален — все живые организмы имеют один и тот же генетический код аминокислот.
5. Код непрерывен — между кодами нет промежутков.
6. Код неперекрываем — конечный нуклеотид одного кода не может служить началом другого.
Условия биосинтеза
Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК — переносчик этой информации из ядра к месту синтеза; рибосомы — органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ — вещество, обеспечивающее энергией процесс кодирования и биосинтеза.
Этапы
Транскрипция — процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.
Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.
После синтеза иРНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.
Трансляция — процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.
Биосинтез белка состоит из ряда реакций.
1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплет-ный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНК—аминокислота, который поступает на рибосомы.
2. Образование комплекса иРНК—рибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.
3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК — аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.
Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15—20 с.
15. В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней. Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции. В конце XIX века было установлено, что некоторые болезни, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию. Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г. , когда Уэнделл Стэнли (Wendell Stanley) впервые закристаллизовал вирус табачной мозаики. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине. Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК) , упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм. Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином) , картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геноме. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки. Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов. Вирусы - это паразиты, которые почти целиком зависят от клетки-хозяина. Они используют его энергию, необходимую для синтеза нуклеиновых кислот и белков, для дальнейших видоизменений этих белков и их адресной доставки. Без этого вирусы не могли бы размножаться и распространяться в среде. И тогда напрашивается вполне резонный вывод: несмотря на то, что все процессы в клетке после инфицирования регулируются вирусом, сам он - неживой объект, паразитирующий на живых системах с автономным метаболизмом. Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энергию и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контексте можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал, который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.
16. Генная инженерия. Развитие молекулярной биологии в конце XX в. привело к ряду открытий, имеющих важное практическое значение. К числу таких достижений принадлежит создание методов синтеза и выделения генов, положивших начало генной инженерии.
Мы знаем уже, что гены представляют собой участки ДНК, которые кодируют ферменты, белковые гормоны, защитные, транспортные и иные белки. Многие из этих белков, синтезируемых в клетках бактерий, животных или растений, представляют большую практическую ценность для медицины, сельского хозяйства, промышленности. Однако чаще всего они производятся клетками в малых количествах, и поэтому широкое использование их затруднено или невозможно. Так, важное значение для медицины имеет производство белкового гормона роста. Он вырабатывается гипофизом и контролирует рост человеческого тела, его недостаток приводит к карликовости. Введение этого гормона детям, страдающим карликовостью, обеспечивает им нормальное развитие.
Если бы мы научились вводить в клетки растений новые гены, кодирующие полноценные белки, то такие растения не отличались бы по пищевой ценности от продуктов животного происхождения. Недостаток животных продуктов (молока, яиц, мяса, рыбы), которые содержат все необходимые аминокислоты, испытывает более половины населения Земли.
В клетках некоторых бактерий есть белки, которые способны с высокой эффективностью превращать световую энергию Солнца в электрическую энергию. Если бы мы могли производить такие белки в больших количествах, то на их основе можно было бы создать промышленные установки для получения дешевой электроэнергии. Эти и многие другие задачи позволяет решать генная инженерия.
Сегодня известно несколько способов получения генов, кодирующих необходимые белки. Так, разработаны методы химического синтеза молекул ДНК с заданной последовательностью нуклеотидов. Более того, уже синтезирован таким способом ряд генов, кодирующих белковые гормоны и интерфероны — белки, защищающие человека и животных от вирусов.
Наконец, необходимые гены можно не синтезировать, а выделять готовыми из множества генов. Разработана специальная техника выделения одиночных нужных генов из всей массы ДНК, где их имеется несколько десятков тысяч.
Синтезированный или выделенный ген можно встроить в самокопирующуюся ДНК бактериофага и ввести в бактериальную клетку. Такие бактерии начинают синтезировать человеческий или животный гормон, нужный фермент или интерферон. Этим способом в бактерию можно ввести программу синтеза любого белка человека, животного или растения.
Нужный ген человека или другого организма можно ввести в бактерию, не вырезая его из ДНК. На рисунке 28 показана одна из схем получения гена путем обратной транскрипции, встраивания его в бактериальную плазмиду и наработки бактерией «чужого» белка. На первом этапе из клеток выделяют иРНК, считанную с выбранного гена. Затем на ней, как на матрице, синтезируют нить комплементарной ей ДНК (кДНК). Это осуществляют с помощью фермента обратной транскриптазы, нуждающейся для начала синтеза в искусственной затравке — коротком фрагменте ДНК, комплементарном матрице. Получается гибридная ДНК-РНК-молекула. После удаления РНК из этой молекулы на оставшейся одноцепочечной ДНК осуществляют синтез второй нити. В результате возникает полноценная молекула ДНК. Используя специальные ферменты, ее встраивают в бактериальную плазмиду — кольцевую внехромосомную молекулу ДНК, выполняющую роль переносчика нужного гена. Такой рекомбинантной, т. е. содержащей чужеродную информацию, плазмидой «заражают» бактериальную клетку. В ней плазмида реплицируется, и перенесенный ген другого микроорганизма, человека, животного или растения начинает работать. В бактериальной клетке накапливается необходимый белок, остается лишь выделить его из бактериальной массы. Таких бактерий размножают в промышленных масштабах и получают необходимый белок в больших количествах. Все эти технологические приемы основаны на успехах в познании физико-химических основ жизни. Решение практических задач с помощью описанных методов молекулярной биологии и генетики и составляет сущность генной инженерии.
Клеточная инженерия. Биотехнология. К генной инженерии примыкает клеточная инженерия, основанная на успехах клеточной биологии. Ученые научились соединять клетки разных видов растений, объединяя их генетические программы. Такие клетки приобретают новые свойства, становятся производителями ценных лекарственных или пищевых веществ, витаминов. Из таких гибридных клеток можно выращивать целые растения с новыми свойствами, объединяющими признаки растений разных видов, которые обычно не скрещиваются между собой. В зародыши клеток животных научились вводить новые гены и получать животных с новыми наследуемыми свойствами.
Не за горами исправление наследственной программы, полученной ребенком от родителей, в том случае, если она содержит «испорченные» гены. Станет возможным введение в зародыш на ранних этапах его развития нормальных генов и тем самым избавление людей от страданий, вызываемых генетическими болезнями.
Человечество вступило в новую эпоху конструирования генетических программ, и на этой основе создаются новые формы микроорганизмов, растений, животных. В технике начинается широкое использование физико-химических принципов работы живой клетки, ее энергетических устройств для решения практических задач и создания промышленных технологий. Возникло перспективное направление в биологии — биотехнология.
16. В процессе деления цитоплазмы все ее органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1—2 ч.
Профаза
Профаза 1
Метафаза
Метафаза
Анафаза
Анафаза 1
Телофаза
Телофаза 1
Профаза 1 Метафаза Анафаза 1
Телофаза
Рис. 7. Схематические изображение основных стадий митоза и мейоза
Митоз. Подготовка клетки к делению
Наиболее распространенным способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий, или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.
Во время подготовки клетки к делению — в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК- В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10—20 ч. Затем наступает процесс деления клетки — митоз.
Фазы митоза
Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза, телофаза (рис. 7).
В профазе хорошо видны ценгриоли - органоиды, играющие определенную роль в делении дочерних хромосом. Центриолй делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.
Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку — центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.
В анафазе дочерние хромосомы расходятся к разным полюсам клетки.
В последней стадии — телофазе — хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.
В процессе деления цитоплазмы все ее органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1—2 ч.
18.
Половое |
Бесполое |
Участвует два организма |
Участвует один организм |
Участвуют половые клетки (гаметы), полученные путем мейоза |
Участвуют соматические клетки, размножающиеся митозом. |
Дети получаются разные (происходит перекомбинация признаков отца и матери, повышается генетическое разнообразие популяции) |
Дети получаются одинаковые, копии родителя (в сельском хозяйстве – позволяет быстро увеличить численность организмов, сохраняя все признаки сорта) |
