Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы 19-24.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
480.55 Кб
Скачать

19) Лазерная сварка и резка.

При лазерной сварке нагрев и плавление металла осуществляется лазерным лучом оптического квантового генератора (ОКГ).

Сущность лазерной сварки

В отличие от обычного светового луча для лазерного луча характерны такие свойства как направленность, монохроматичность и когерентность.

За счет направленности энергия лазерного луча концентрируется на относительно небольшом участке. Так, по своей направленности лазерный луч в тысячи раз превышает луч прожектора.

Лазерный луч по сравнению с обычным светом является монохроматичным, т. е. обладает фиксированной длиной волны и частотой. Это облегчает его фокусировку оптическими линзами.

Лазерный луч имеет высокую степень когерентности – согласованного протекания во времени нескольких волновых процессов. Когерентные колебания вызывают резонанс, усиливающий мощность излучения.

Благодаря перечисленным свойствам лазерный луч может быть сфокусирован на очень маленькую поверхность материала и создать на ней плотность энергии, достаточную для нагревания и разрушения материала.

Для лазерной сварки обычно используются следующие типы лазеров: - твердотельные; - газовые – с продольной или поперечной прокачкой газа; - газодинамические.

Схема процесса лазерной сварки приведена на рисунке ниже.

Лазерная сварка производится в атмосферных условиях, без создания вакуума, необходима защита расплавленного металла от воздуха. Обычно для защиты используются газы, в частности аргон. Особенностью процесса лазерной сварки является то, что вследствие высокой тепловой мощности луча на поверхности свариваемого изделия происходит интенсивное испарение металла. Пары ионизируются, что приводит к рассеиванию и экранированию луча лазера. В связи с этим при использовании лазеров большой мощности в зону сварки необходимо подавать, кроме защитного, так называемый плазмоподавляющий газ. В качестве плазмоподавляющего газа обычно используют гелий, который значительно легче аргона и не рассеивает луч лазера. Для упрощения процесса целесообразно применение смесей 50% Аг + 50% Не, которые выполняют плазмоподавляющую и защитную функции. В этом случае сварочная горелка должна обеспечивать подачу газа таким образом, чтобы он сдувал ионизированный пар.

При лазерной сварке луч постепенно углубляется в деталь, оттесняя жидкий металл сварочной ванны на заднюю стенку кратера. Это позволяет получить «кинжальное» проплавление при большой глубине и малой ширине шва.

Высокая концентрация энергии в лазерном луче позволяет достигать высоких скоростей сварки, обеспечивая одновременно благоприятный термический цикл и высокую технологическую прочность металла шва.

Область применения Очень удобно применять лазер при сварке тонких (менее 1 мм толщиной) изделий. Это, в первую очередь, ювелирные изделия, электроприборы, аккумуляторы и многое другое. Также очень широкое применение этот вид сварки нашел в атомной промышленности, где очень важна надежность сварки. Металл при воздействии на него лазерным лучом нагревается и плавится настолько быстро, что, пока он не затвердеет, тонкая кромка просто не успевает деформироваться.

Преимущества лазерной сварки Лазерная сварка обладает существенными преимуществами: высокая скорость сварочных работ, меньшая зона теплового воздействия, отсутствие необходимости в обработке сварочных швов, увеличение стойкости металла к коррозии, большая глубина проплавления металла при очень небольшой ширине сварочного шва и точная дозировка энергии, необходимой для осуществления сварочных работ.

Недостатки технологии

Недостатками лазерной сварки являются высокая сложность и стоимость оборудования, низкий КПД лазеров.

Технология лазерной резки металла

Воздействие лазерного излучения на металл при разрезании характеризуется общими положениями, связанными с поглощением и отражением излучения, распространением поглощенной энергии по объему материала за счет теплопроводности и др., а также рядом специфических особенностей.

В области воздействия лазерного луча металл нагревается до первой температуры разрушения – плавления. С дальнейшим поглощением излучения происходит расплавление металла, и фазовая граница плавления перемещается в глубь материала. В то же время энергетическое воздействие лазерного луча приводит к дальнейшему увеличению температуры, достигающей второй температуры разрушения – кипения, при которой металл начинает активно испаряться.

Таким образом, возможны два механизма лазерной резки – плавлением и испарением. Однако последний механизм требует высоких энергозатрат и осуществим лишь для достаточно тонкого металла. Поэтому на практике резку выполняют плавлением. При этом в целях существенного сокращения затрат энергии, повышения толщины обрабатываемого металла и скорости разрезания применяется вспомогательный газ, вдуваемый в зону реза для удаления продуктов разрушения металла. Обычно в качестве вспомогательного газа используется кислород, воздух, инертный газ или азот. Такая резка называется газолазерной.

В зависимости от свойств разрезаемого металла применяются два механизма газолазерной резки. При первом значительный вклад в общий тепловой баланс вносит теплота реакции горения металла. Такой механизм резки обычно используется для материалов, подверженных воспламенению и горению ниже точки плавления и образующих жидкотекучие оксиды. Примерами могут служить низкоуглеродистая сталь и титан.

При втором механизме резки материал не горит, а плавится, и струя газа удаляет жидкий металл из области реза. Данный механизм применяется для металлов и сплавов с низким тепловым эффектом реакции горения, а также для тех, у которых при взаимодействии с кислородом образуются тугоплавкие оксиды. Например, легированные и высокоуглеродистые стали, алюминий, медь и др.

Резка различных материалов

Для разрезания металлов в основном требуется мощность лазера от 450–500 Вт и выше, для цветных металлов – от 1кВт и выше.

Технологические параметры

Основными технологическими параметрами процесса лазерной резки являются:

  • мощность излучения;

  • скорость резки;

  • давление вспомогательного газа;

  • диаметр сфокусированного пятна и др.

При импульсном режиме к данным параметрам добавляются:

  • частота повторения импульсов;

  • длительность импульсов;

  • средняя мощность излучения.

Эти параметры влияют на ширину реза, качество резки, зону термического влияния и другие характеристики.

Преимущества, недостатки и сравнительная характеристика

Сфокусированное лазерное излучение позволяет разрезать почти любые материалы независимо от их теплофизических свойств. При этом можно получать качественные и узкие резы (шириной 0,1–1 мм) со сравнительной небольшой зоной термического влияния. При лазерной резке возникают минимальные деформации, как временные в процессе обработки заготовки, так и остаточные после ее полного остывания. В результате возможна резка с высокой степенью точности, в том числе нежестких и легкодеформируемых изделий. Благодаря относительно несложному управлению лазерным пучком можно выполнять автоматическую обработку плоских и объемных деталей по сложному контуру.

Лазерная резка особенно эффективна для стали толщиной до 6 мм, обеспечивая высокие качество и точность при сравнительно большой скорости разрезания. Однако для металла толщиной 20–40 мм она применяется значительно реже кислородной или плазменной резки, а для металла толщиной свыше 40 мм – практически не используется.

20) Плазменная сварка и резка.

Плазменная сварка – это сварка с помощью направленного потока плазменной дуги. Имеет много общего с технологией аргонной сварки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]