- •Физиология растений как комплексная наука цели задачи объекты исследования
- •Функции растений как основа гомеостаза организма
- •Основные функции органов растения
- •Роль зеленого растения в биосфере
- •Пространственно- временная организация растительной клетки
- •6. Трансмембранный перенос веществ. Типы транспорта. Симпорт, антипорт, унипорт. Схема транспорта и котранспорта молекул.
- •7. Транспорт воды. Белки аквапорины («водные каналы»). Группы растительных аквапоринов.
- •8. Фотосинтез: определение, уравнение, процессы, значение.
- •9. История изучения фотосинтеза: эксперименты, ученые, значение.
- •10. Современный этап в исследовании фотосинтеза.
- •11. Лист как орган фотосинтеза, особенности строения листа.
- •12. Хлоропласты: строение, организация, образование (основные этапы, сущность). Значение сложной организации внутренних мембран хлоропластов.
- •13. Пигментные системы фотосинтеза.
- •14. Хлорофилл: строение, виды, значение.
- •15. Химические свойства хлорофилла.
- •21. Фотофизический этап световой фазы фотосинтеза.
- •22. Понятие о фотосистемах: фотосистема I(фс-1) и фотосистема II(фс-2).
- •23. B6f или b6f-комплекс.
- •24. Нециклический, циклический и псевдоциклический транспорт электронов в хлоропластах.
- •Световая фаза
- •Темновая фаза
- •Цикл Кальвина можно разделить на фазы:
- •Цикл Кальвина можно разделить на фазы.
- •Вопрос 31: Температура как фактор фотосинтеза
- •Вопрос 32: Свет как фактор фотосинтеза
- •Вопрос 33: Определение процесса клеточного дыхания. Общая схема процесса дыхания.
- •Вопрос 34:Гликолиз: эпаты, реакции, ферменты.
- •Вопрос 35: Цикл Кребса (трикарбоновых кислот, лимонной кислоты).
- •71. Устойчивость растений к гипо- и аноксии.
- •72. Газоустойчивость растений.
- •73. Радиоустойчивость растений.
- •74. Устойчивость растений к патогенам.
- •75. Сигнальные системы защитных реакций растений к патогенам
11. Лист как орган фотосинтеза, особенности строения листа.
Фотосинтез может протекать в различных органах растений (стебли, плоды и др.), имеющих зеленую окраску, но основным специализированным органом фотосинтеза является лист.
Лист – это орган растения, исходно специализированный для осуществления фотосинтеза, сформировался в ходе длительного эволюционного процесса. Анатомическое строение листа приспособлено к тому, чтобы обеспечить поступление СО2 к клеткам, содержащим зеленые пластиды, и достигнуть максимального поглощения энергии света: 1. Плоская структура листа обеспечивает более плотное захватывание света для фотосинтеза; 2. Наличие межклетников облегчает доступ СО2 ко всем клеткам; 3. Палисадная паренхима – это основная ассимиляционная ткань листа углеводов, особенно богатая хлоропластами. Она примыкает к эпидермису, расположенному на верхней стороне листа; 4. Густая сеть жилок снабжает клетки паренхимы водой и способствует быстрому оттоку из листа углеводов, образующихся в процессе фотосинтеза.
12. Хлоропласты: строение, организация, образование (основные этапы, сущность). Значение сложной организации внутренних мембран хлоропластов.
Фотосинтез растений осуществляется в хлоропластах: обособленных двухмембранных зеленых органеллах клетки. Кроме того, в растительной клетке имеются еще два вида пластид: лейкопласты – бесцветные, хромопласты – оранжевые. В лейкопластах синтезируется и отлагается в запас крахмал, в хромопластах накапливаются каратиноиды. Строение хлоропласта: Строение хлоропласта: 1 — внешняя мембрана; 2 — внутренняя мембрана; 3 — крахмальное зерно; 4 — ДНК; 5 — тилакоиды стромы (фреты); 6 — тилакоид граны; 7 — матрикс (строма); 8 – внутритилакоидное пространство (люмен).
Внешняя оболочка хлоропластов отграничивает его внутреннее содержимое от цитоплазмы. Это барьер, осуществляющий контроль обмена веществ между хлоропластом и цитоплазмой. Оболочка состоит из 2-х мембран: Наружная мембрана – проницаемая для большинства органических и неорганических молекул. Она содержит специальные транслокаторы белков, через которые поступают пептиды из цитоплазмы в хлоропласт. Внутренняя мембрана – избирательно проницаема и осуществляет контроль над транспортом белков, липидов, органических кислот и углеводов между хлоропластом и цитоплазмой. Участвует в формировании внутренней мембранной системы хлоропластов. Строма – гидрофильный, слабоструктурированный матрикс хлоропластов, содержащий водорастворимые органические соединения, а также неорганические ионы. В строме осуществляются реакции фотосинтетической ассимиляции углерода. В строме находятся: кольцевая ДНК, рибосомы, ферменты матричного синтеза. Внутренняя мембранная система хлоропластов – здесь протекают световые реакции фотосинтеза. Мембраны образуют тилакоиды, которые либо тесно соприкасаются друг с другом и уложены в стопки, или граны (тилакоиды гран – 6), либо пронизывают строму, соединяя граны между собой (тилакоиды стромы (фреты)). Собственно образующие их мембраны называют мембранами (ламеллами) гран и мембранами (ламеллами) стромы. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.
Значение сложной организации внутренних мембран хлоропластов: Благодаря значительному мембранному пространству достигается увеличение числа функциональных единиц, способных осуществлять световые реакции фотосинтеза. Единство внутренней системы хлоропластов позволяет отдельным компонентам мембраны мигрировать латерально и вступать между собой в структурный и функциональный контакт. Это необходимо для переноса энергии квантов света в реакционные центры, а также для транспорта электронов по электрон-транспортной цепи в ходе световых реакций фотосинтеза. Разделение мембраной всего внутреннего пространства хлоропластов на два компонента – стромальное и люмен – позволяет создавать электрохимические градиенты ионов между ними. Создание электрохимического градиента Н+ на внутренних мембранах хлоропластов – важный этап в трансформации энергии квантов света в энергию макроэргических связей АТФ. Образование гранальной структуры внутри хлоропластов значительно повышает общую эффективность фотосинтеза и создает дополнительные возможности для регуляции световых реакций. Сегрегация (разделение) в стромальных или гранальных тилакоидах компонентов мембран с различными функциями позволяет добиться определенной независимости их функционирования. Это итог длительного эволюционного процесса – впервые появилась у зеленых водорослей.
Основные этапы образования хлоропластов. Предшественники хлоропластов – пропластиды. Пропластиды образуются из инициальных частиц (зачатков), содержащихся в меристиматических клетках. Формирование хлоропласта может осуществляться двумя путями: I путь – непосредственное преобразование пропластид в хлоропласты. Реализуется при росте растений в условиях нормального соотношения дня и ночи. Пропластиды
меристиматических клеток листа превращаются в хлоропласты параллельно с ростом и дифференцировкой клеток листа. Биогенез хлоропластов сопровождается формированием тилакоидных мембран хлоропластов при участии внутренней мембраны оболочки пропластиды. II путь – образование хлоропластов из этиопластов. Этиопласты – органеллы клеток растения, растущего в отсутствие света. Они образуются из пропластид и имеют некоторвые особенности внутреннего строения: содержат проламеллярное тело, сформированное в результате скопления ограниченных мембраной пузырьков и разветвленных трубчатых структур. Мембраны проламеллярного тела содержат небольшие количества каротиноидов и предшественника хлорофилла – протохлорифиллида. Формирование тилакоидных мембран хлоропластов в этиопластах происходит при участии мембран проламелярного тела в ответ на освещение. Выделяют три этапа фотоморфогенеза хлоропластов из этиопластов: 1 этап: Из трубчатых элементов проламелярных тел образуются крупные пузырьки, располагающиеся по радиусу. Этот процесс сопровождается образованием хлорофилла из имеющегося в этиопластах протохлорофиллида. 2 этап: Происходит накопление белков, липидов, пигментов и самосборка мембран тилакоидов. 3 этап: Происходит дифференциация гран. Эта стадия совпадает с интенсивным синтезом хлорофилла. Для формирования гран необходим высокий уровень содержание хлорофиллов в хлоропластах. Таким образом, формирование хлоропласта происходит только на свету. Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты). Лейкопласты чаще всего локализованы в клетках запасающих тканей. Подобно пропластидам они характеризуются слабо развитой ламеллярной структурой. Во многих случаях в лейкопластах ламеллы сохраняют связь с внутренней оболочкой. В строме лейкопластов располагаются крахмальные зерна, осмиофильные глобулы, белковые включения. Амилопласты могут превращаться в хлоро- пласты, например, как это происходит при позеленении клубней картофеля на свету. Хромопласты — это, по-видимому, результат деградации хлоропластов, при которой ламеллярная структура частично разрушается. Одновременно происходит образование осмиофильных глобул, содержащих каротиноиды. Эти глобулы располагаются сплошным слоем под оболочкой пластид. Регуляция биогенеза хлоропластов. Биогенез хлоропластов повергается контролю и регуляции со стороны внешних и внутренних факторов. Выделяю следующие виды регуляции: Фоторегуляция связана с активацией светом синтеза пигментов и белков, входящих в светособирающие комплексы. Контроль синтеза фотосинтетических пигментов основан на регуляции светом активности осуществляющих его ферментов. Фоторегуляция синтеза белков хлоропластов осуществляется на генетическом уровне. В регуляции биогенеза хлоропластов участвуют сигнальные фоторецепторные системы – фитохромная система и рецепторы синего света. Гормональная регуляция связана с влиянием на синтез пигментов и белков хлоропластов ряда фитогормонов. Генетическая регуляция включает контроль биогенеза хлоропластов на всех уровнях реализации генетической информации, включая транскрипцию, трансляцию, процессинг, транспорт белков, сборку мультипептидных комплексов. Обнаружена регуляция экспрессии ряда генов ядерной ДНК, обслуживающих хлоропласт светом, гормонами, продуктами фотосинтеза
