- •Физиология растений как комплексная наука цели задачи объекты исследования
- •Функции растений как основа гомеостаза организма
- •Основные функции органов растения
- •Роль зеленого растения в биосфере
- •Пространственно- временная организация растительной клетки
- •6. Трансмембранный перенос веществ. Типы транспорта. Симпорт, антипорт, унипорт. Схема транспорта и котранспорта молекул.
- •7. Транспорт воды. Белки аквапорины («водные каналы»). Группы растительных аквапоринов.
- •8. Фотосинтез: определение, уравнение, процессы, значение.
- •9. История изучения фотосинтеза: эксперименты, ученые, значение.
- •10. Современный этап в исследовании фотосинтеза.
- •11. Лист как орган фотосинтеза, особенности строения листа.
- •12. Хлоропласты: строение, организация, образование (основные этапы, сущность). Значение сложной организации внутренних мембран хлоропластов.
- •13. Пигментные системы фотосинтеза.
- •14. Хлорофилл: строение, виды, значение.
- •15. Химические свойства хлорофилла.
- •21. Фотофизический этап световой фазы фотосинтеза.
- •22. Понятие о фотосистемах: фотосистема I(фс-1) и фотосистема II(фс-2).
- •23. B6f или b6f-комплекс.
- •24. Нециклический, циклический и псевдоциклический транспорт электронов в хлоропластах.
- •Световая фаза
- •Темновая фаза
- •Цикл Кальвина можно разделить на фазы:
- •Цикл Кальвина можно разделить на фазы.
- •Вопрос 31: Температура как фактор фотосинтеза
- •Вопрос 32: Свет как фактор фотосинтеза
- •Вопрос 33: Определение процесса клеточного дыхания. Общая схема процесса дыхания.
- •Вопрос 34:Гликолиз: эпаты, реакции, ферменты.
- •Вопрос 35: Цикл Кребса (трикарбоновых кислот, лимонной кислоты).
- •71. Устойчивость растений к гипо- и аноксии.
- •72. Газоустойчивость растений.
- •73. Радиоустойчивость растений.
- •74. Устойчивость растений к патогенам.
- •75. Сигнальные системы защитных реакций растений к патогенам
Вопрос 33: Определение процесса клеточного дыхания. Общая схема процесса дыхания.
Дыхание присуще всем органам, тканям и клеткам растения. Об интенсивности дыхания можно судить, измеряя количество выделяемого тканью CO2 либо поглощаемого ею O2.Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окислениеуглеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание. (схематын короорун бээгит)
Вопрос 34:Гликолиз: эпаты, реакции, ферменты.
Гликолиз — путь ферментативного расщепления глюкозы — является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением. Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода.
Реакции гликолиза идут в цитозоле и в хлоропластах. Существует три этапа гликолиза: 1 – подготовительный (фосфорилирование гексозы и образование двух фосфотриоз); 2 – первое окислительное субстратное фосфорилирование; 3 – второе внутримолекулярное окислительное субстратное фосфорилирование.
Глюкоза + 2НАД+ + 4АДФ + 2АТФ + 2Фн = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H2O + 4Н+.
Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:
Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 4Н+.
Вопрос 35: Цикл Кребса (трикарбоновых кислот, лимонной кислоты).
Цикл Кребса представлен на рисунке, где Ф1 – цитратсинтаза (конденсирующий фермент); Ф2 – аконитаза; Ф3 – изоцитратдегидрогеназа; Ф4 – a- кетоглутаратдегидрогеназа; Ф5 – сукцинилтиокиназа; Ф6 – сукцинатдегидрогеназа; Ф7 – фумараза; Ф8 – малатдегидрогеназа; Ф9 – изоцитратлиаза; Ф10 – малатсинтетаза. Включение углеродных атомов ацетильного остатка в молекулу лимонной кислоты помечено «звездочками». Пунктирными линиями изображены реакции глиоксилатного шунта. Собственно ЦТК начинается с конденсации ацетил-КоА с молекулой щавелевоуксусной кислоты, катализируемой цитратсинтазой. Продуктами реакции являются лимонная кислота и свободный кофермент А. Лимонная кислота с помощью фермента аконитазы последовательно превращается в цис-аконитовую и изолимонную кислоты. При этом за счет перемещения гидроксила и протона при присоединении воды в молекуле изолимонной кислоты появляется группировка, -НСОН-, которой не было в молекуле лимонной кислоты и которую способна окислить НАД-зависимая дегидрогеназа. Изолимонная кислота превращается в α-кетоглутаровую кислоту в реакции, катализируемой изоцитратдегидрогеназой. На первом этапе реакции имеет место дегидрирование изолимонной кислоты, в результате которого образуются щавелевоянтарная кислота и НАД-H +Н+. На втором этапе щавелевоянтарная кислота, все еще, вероятно, связанная с ферментом, подвергается декарбоксилированию. Продукты реакции – α -кетоглутаровая кислота, освобождающаяся от фермента, и CO2. Далее α-кетоглутаровая кислота подвергается далее окислительному декарбоксилированию, катализируемому α-кетоглутаратдегидрогеназным комплексом, в результате чего образуется сукцинил-КоА. Эта реакция – единственная необратимая реакция из десяти, составляющих ЦТК. Один из продуктов реакции – сукцинил-КоА – представляет собой соединение, содержащее высокоэнергетическую тиоэфирную связь. Следующий этап – образование янтарной кислоты из сукцинил-КоА, катализируемое сукцинилтиокиназой, в результате которого энергия, освобождающаяся при разрыве тиоэфирной связи, запасается в фосфатной связи ГТФ. ГТФ затем отдает свою фосфатную группу молекуле АДФ, что приводит к образованию АТФ. Следовательно, на данном этапе ЦТК идет субстратное фосфорилирование. Янтарная кислота окисляется в фумаровую с помощью фермента сукцинатдегидрогеназы. Кофактором фермента является ФАД. Далее фумаровая кислота гидратируется под действием фумаразы, в результате чего образуется яблочная кислота. Яблочная кислота подвергается окислению, приводящему к образованию ЩУК. Реакция катализируется НАД-зависимой малатдегидрогеназой. Этой реакцией завершается ЦТК, так как вновь регенерируется молекула-акцептор (ЩУК), запускающая следующий оборот цикла. Энергетическим «топливом», перерабатываемым в ЦТК, служат не только углеводы, но и жирные кислоты (после предварительной деградации до ацетил-КоА), а также многие аминокислоты (после удаления аминогруппы в реакциях дезаминирования или переаминирования). В результате одного оборота цикла Кребса происходят два декарбоксилирования, четыре дегидрирования и одно фосфорилирование. Итогом 2-х декарбоксилирований является выведение из цикла 2-х атомов углерода (2 молекулы CO2), т. е. их выводится ровно столько, сколько поступило в виде ацетильной группы. В результате 4-х дегидрирований образуются 3 молекулы НАД-H2 и 1 молекула ФАД-H2. Как видно, в процессе этих превращений весь водород оказывается на определенных переносчиках, а потому встает задача передать его через другие переносчики на молекулярный кислород. При окислении одной молекулы пировиноградной кислоты образуются 3 молекулы НАДН, 1 молекула НАДФН и 1 молекула ФАДН2, при окислении которых в дыхательной электрон-транспортной цепи синтезируются 1 4 молекул АТФ. Кроме того, 1 молекула АТФ образуется в результате субстратного фосфорилирования. ЦТК можно рассматривать как выработанный клеткой механизм, имеющий двоякое назначение. Основная функция его заключается в том, что это совершенный клеточный «котел», в котором осуществляются полное окисление вовлекаемого в него органического субстрата и отщепление водорода. Другая функция цикла – снабжение клетки рядом предшественников для биосинтетических процессов. Обычно ЦТК является дальнейшей «надстройкой» над анаэробными энергетическими механизмами клетки. (рисунок посмотрите сами)
41.Влияние света на рост растений – фотоморфогенез. Влияние красного и дальнего. Помимо фотосинтеза для растений, выращиваемых методом светокультуры, важное значение имеют процессы фотоморфогенеза, т. е. изменения размеров и формы под влиянием излучения разного качества и разной интенсивности.
Материальной основой, с помощью которой осуществляется формативное действие, служат, видимо, пигменты. Один из них – хромопротеид фитохром (фх). Установлено, что фитохром существует в двух формах: одна поглощает красное (red) излучение с длиной волны 660 нм (Фк), а другая — дальнее красное (far-red) с длиной волны 730 нм (Флк). Под действием красного излучения Фк активизируется и переходит в Фдк, а под действием дальнего красного – наоборот. Установлено, что фитохром регулирует прорастание семян, растяжение стеблей, образование листьев и пигментов, формирование корневой системы и некоторые другие физиологические процессы, ход которых определяется наличием взаимоисключающих влияний красного или дальнего красного излучения (red-far-red effect).
Установлено также сильное формативное действие синего излучения с длиной волны 450 нм. Это излучение избирательно поглощается каротиноидами, флавинами и пластохинонами.
Формативное действие оптического излучения проявляется также в виде:
фототропизма, т. е. неравномерного роста вследствие одностороннего облучения;
фототаксиса – движения как в сторону источника, так и от него;
фотонастий — ненаправленных кратковременных движений.
Эти процессы редко оказывают значительное влияние на рост и урожай сельскохозяйственных культур. Более подробно они изложены в курсе физиологии растений.
Фотопериодизм сельскохозяйственных культур изучен еще недостаточно. Известно, что отдельные сорта томатов или огурцов неодинаково реагируют на разное соотношение светлого и темного периода суток. В летнее время эти культуры успешно растут и плодоносят и на юге (Крым), и на Крайнем Севере (Кольский п-ов).
Из курса физиологии растений известно, что фотопериодическая реакция зависит от качества излучения, температуры воздуха, этапа развития растений и многих других факторов.
Этапы органогенеза и фотоморфогенеза
Более полную характеристику особенностей развития растений, выращиваемых при искусственном облучении, может дать изучение динамики прохождения отдельных этапов органогенеза путем морфофизиологического анализа. В настоящее время метод морфофизиологического анализа развития растений получил широкое распространение как у нас, так и за рубежом (Куперман). Применение его дает возможность своевременно и точно осуществлять биологический контроль за развитием растений. Метод особенно перспективен для культур, выращиваемых в теплицах, где можно регулировать как условия внешней среды, так и в известной степени прохождение отдельных этапов органогенеза.
Так, у томата сортов Пушкинский и Лучший из всех установлены следующие закономерности:
ускорение развития растений при выращивании их под ксеноновыми лампами по сравнению с люминесцентными происходит в основном в результате более быстрого прохождения II этапа — образование кисти;
«забег» в развитии растений, полученный на ранних этапах развития, сохраняется на всех последующих;
у томатов от темпов развития главного стебля зависит развитие побегрв первого порядка (ускорение развития главного побега замедляет или приостанавливает развитие боковых);
условия выращивания растений в конце II — начале IV этапа определяют число цветков в кисти.
Таким образом, анатомическая структура листьев, накопление пигментов, усвоение лучистой энергии и, наконец, фотосинтез и фотоморфогенез — лабильные физиологические процессы. Так как в производственных условиях уровень облученности, как правило, невысок, основным фактором, вызывающим изменчивость перечисленных процессов, является спектральный состав излучения ламп.
Растения используют свет двумя путями: во-первых, как энергетический ресурс (свет служит источником энергии для синтеза органических веществ — фотосинтез); во-вторых, как сигнал или источник информации. Во втором случае энергия света может быть на несколько порядков ниже, чем в первом. Свет оказывает большое и разностороннее влияние на темпы и характер роста, как отдельных органов, так и растительного организма в целом. При этом на разные стороны ростовых процессов влияние света проявляется неоднозначно. Так, свет необходим для протекания процесса фотосинтеза, и поэтому накопление массы растения без света не идет. Вместе с тем рост клеток растяжением может идти в темноте, более того, на свету этот процесс тормозится. Свет оказывает большое влияние и на формообразовательные процессы. Этиолированные проростки, выросшие в темноте, характеризуются рядом анатомических и морфологических особенностей. В отсутствие света происходит упрощение анатомической структуры стебля. Слабо развиваются ткани центрального цилиндра, механические ткани. Вместе с тем растяжение клеток в темноте идет очень интенсивно. В результате образуются длинные, вытянутые стебли. Листья редуцированы, у двудольных растений вместо листовой пластинки образуются лишь небольшие чешуйки. Этиолированные проростки имеют слегка желтоватый оттенок. По-видимому, более быстрое вытягивание стебля и корня, этиолированных проростков выработалось в процессе эволюции, так как в большинстве случаев прорастание семян происходит в почве в отсутствие света, и эти особенности, а также отсутствие листьев облегчают проростку проникновение через слой почвы. Возможно, что вытягивание стебля в отсутствие света является следствием отсутствия ингибиторов роста. В темноте образуется много ауксинов. Нарушение соотношения ауксинов и ингибиторов вызывает несбалансированный рост. При выходе проростков на поверхность почвы происходят их внутренние и внешние изменения. В темноте у проростков двудольных растений гипокотиль изогнут, что защищает точку роста в почве от повреждений. Под влиянием света этот изгиб («крючок») выпрямляется. На свету рост стебля тормозится, рост листьев усиливается, и они принимают обычную форму. Под влиянием света происходят анатомические изменения стебля, дифференцируется эпидермис, появляются волоски, изменяется окраска — синтезируется хлорофилл. Эти изменения получили название фотоморфогенеза. Интересно заметить, что ткани проростков могут рассматриваться как «световоды», т. е. они способны проводить свет. Вследствие этого под влиянием освещения надземных органов меняются направление и темпы роста корневых систем. Именно это способствует их углублению.
Изучение влияния отдельных участков спектра на перечисленные изменения (фотоморфогенез) показало, что чаще всего они вызываются при воздействии красного света с длиной волны около 660 нм. Для того чтобы свет оказал какое-либо физиологическое влияние, он должен быть поглощен каким-либо веществом. Таким веществом оказался пигмент фитохром. Было показано, что многие физиологические реакции, вызываемые облучением красным светом, можно снять при облучении дальним красным светом (длина волны около 730 нм). Эти исследования привели к заключению, что фитохром существует в двух формах, которые под влиянием облучения светом определенной длины волны могут переходить одна в другую. Фитохром, поглощающий красный свет, называют фитохром красный (Фк), а поглощающий дальний красный — фитохром дальний красный (Фдк). При поглощении красного света (660 нм) Фк переходит в Фдк, а при поглощении дальнего красного света (730 нм) Фдкпереходит в Фк:
может и самопроизвольно распадаться. В темноте Фдк или необратимо разрушается, или под влиянием дальнего красного света превращается в Фк. В настоящее время показано, что взаимопревращение фитохромов идет не сразу, а через ряд промежуточных форм. Надо учитывать, что на протяжении большей части дня соотношение энергии красных и дальних красных лучей составляет 3:1. Это благоприятствует превращению Фк в Фдк (активная форма). Вместе с тем в вечерние и ночные часы преобладает дальний красный свет, в связи с чем равновесие фитохромной системы сдвигается в сторону преобладания Фк (неактивная форма). Надо учитывать также, что Фк более устойчив и может синтезироваться в клетке, тогда как Фдк легко разрушается. В связи со сказанным изменения в соотношении двух форм фитохрома можно представить в виде схемы. Обе формы фитохрома выделены из растений — это хромопротеиды с молекулярной массой около 120 кДа. Хромофорная часть (собственно пигмент) представляет собой вещество, близкое по структуре к фикобилинам (красным пигментам цианобактерий и красных водорослей), состоящим из четырех пиррольньгх группировок, соединенных в открытую цепочку. Фв представляет собой восстановленную форму Фк. Фк имеет голубую окраску, а Фдк — зелено-желтую. Кроме основных линий поглощения в красной и дальней красной части спектра, оба фитохрома поглощают еще коротковолновый свет: Фк— с длиной волны 370 нм, Фдк — 400 нм. Спектрофотометрические и иммунологические исследования показали, что высокое содержание фитохрома характерно для меристематических, а также этиолированных тканей.
Фитохромная система, по-видимому, очень древняя, так как она имеется даже у цианобактерий и у некоторых гетеротрофных организмов. Фитохромы можно обнаружить в различных органах растения. Физиологические проявления, которые регулируются фитохромной системой, можно отнести к фотоморфогенетическим. Основным критерием для этих реакций служит их обратимость (вызываются облучением красным светом и снимаются при облучении дальним красным светом). Особенности влияния красного и дальнего красного света видны при изучении прорастания светочувствительных семян.
Рассмотрение данных в таблице показывает, что благоприятное действие на прорастание красного света снимается облучением дальним красным. К реакциям, регулируемым фитохромной системой, относятся ингибирование роста стебля, открытие крючка гипокотиля, развертывание семядолей, дифференциация эпидермиса и устьиц, образование элементов ксилемы, ориентация хлоропластов, образование антоциана, прорастание светочувствительных семян, фотопериодическая реакция растения и др. Все процессы, регулируемые фитохромной системой, делят на два типа: 1) процессы, которые под влиянием освещения красным светом усиливаются (например, дифференциация эпидермиса, синтез антоциана, прорастание семян); 2) процессы, которые тормозятся (удлинение гипокотиля, рост стебля).
Механизм действия фитохрома до настоящего времени не известен. Активной формой фитохрома является Фдк, именно его образование, которое происходит под влиянием облучения красным светом, вызывает определенный физиологический эффект. Однако и Фда не весь участвует в реакциях, а лишь его определенная часть. Возможно, что эта активная часть Фдк связана с мембранами и определенным образом ориентирована в них. В этой связи представляют интерес данные немецкого физиолога В. Гаупта, согласно которым хлоропласты ориентируются под прямым углом по отношению к лучу красного света. При этом луч может быть диаметром всего 3 мк и прямо не попадать на хлоропласты. Из этого можно сделать вывод, что фитохром локализован по преимуществу в мембранах, при этом каждая форма фитохрома определенным образом ориентирована в мембранах. При освещении определенными лучами спектра эта ориентация меняется, что и вызывает изменение ориентации хлоропластов. Воздействие Фдк может проявляться быстро (минуты) и медленно (часы). В первом случае действие Фдк, по-видимому, связано с изменением свойств мембран. Имеется предположение, что в быстрых эффектах фитохрома играют роль сигнальные цепи. Накопление Фдк в мембранах влияет на их проницаемость, в частности для К+, что, в свою очередь, изменяет электрический потенциал и вызывает определенный биологический эффект, например, никтинастическое закрывание листьев. В случае более длительных эффектов предполагают, что фитохром вызывает активацию (дерепрессию) части генома (Т. Мор). Эта точка зрения подтверждается тем, что при добавлении ингибиторов синтеза белка и РНК действие красного света не проявляется. Есть данные, что фитохром регулирует транскрипцию многих генов, связанных с позеленением, а также ген ядра, кодирующий малые субъединицы РБФ карбоксилазы/оксигеназы и связанные с хлорофиллом белки. Показано также, что красный свет индуцирует образование ряда ферментов. Ответная реакция, вызываемая Фдк или его особой формой, зависит от состояния клетки или ткани, от ее компетентности. Под влиянием красного света активность таких фитогормонов, как гиббереллины и цитокинины, возрастает. Не исключено, что действие фитохрома на геном опосредовано фитогормонами. Как уже отмечалось, многие физиологические и морфологические изменения, индуцированные фитохромом, связаны с кратковременным освещением малой интенсивности 1/100 солнечного света в течение 1 мин — низкоэнергетическими реакциями (НЭР). Однако было показано, что, для того чтобы в растениях исчезли все признаки этиоляции и они приобрели нормальный вид, этого недостаточно. Таким образом, выяснилась необходимость более длительного и более интенсивного облучения. Было сделано заключение, что такие эффекты включают высокоэнергетические реакции (БЭР). Именно БЭР обеспечивают нормальный рост побегов. При этом оказалось, что спектр действия БЭР также несколько отличен. Наибольшее влияние оказывают не красные, а дальние красные (710—730 нм) и синие лучи. Что касается пигментов (фоторецепторов), которые ответственны за эти реакции, то для проявления действия дальнего красного света это тот же Ф. Фоторецептор для синего света окончательно не установлен, возможно, что это флавиновые соединения, например, флавинокаротиноиды. В последнее время действию синего света на растения уделяется большое внимание. Показано, что синий свет влияет на электрические и генетические процессы, изменяет метаболизм. Причем его действие отличается от эффектов красного света. Примерами процессов, регулируемых синим светом, являются фототропизм, биосинтез пигментов и др. Установлена стимуляция синим светом разрушения крахмала и биосинтеза малата в замыкающих клетках устьиц. Обогащение осмотически действующими веществами приводит к открытию устьиц. Синий свет влияет на устьичные движения также путем активации Н+-АТФазы плазмалеммы. Синий свет вызывает возникновение разности потенциалов, что влияет на поступление ионов. В случае стимулирования генов синий свет стимулирует транскрипцию и трансляцию и приводит к морфогенетическим эффектам. Рассматривая воздействие света, необходимо остановиться на влиянии круглосуточного освещения на процессы роста. Опыты по выращиванию растений при свете электрических ламп (светокультура) показали, что рост многих растений при круглосуточном освещении идет значительно интенсивнее, особенно при правильном подборе качества света, т. е. типа ламп (Б.С. Мошков). Так, при выращивании сеянцев древесных культур (дуб, сосна) на непрерывном освещении темпы их роста возрастают в 1,5—2 раза (В.М. Леман). Такие однолетние растения, как горох и фасоль, также характеризуются очень интенсивным ростом в условиях круглосуточного освещения. Однако существуют растения, на рост которых круглосуточное освещение оказывает отрицательное влияние. В некоторых случаях круглосуточное освещение вызывает явления, сходные с теми, которые обычно являются следствием недостатка света. Такие растения, как томаты, в условиях непрерывного освещения вытягиваются, листья становятся желтыми, хлорофилл разрушается. Это явление называют зеленой этиоляцией. Особенно вредное влияние круглосуточного освещения проявляется при высокой ночной температуре.
42.Движение растений. Тропизмы, настии. Растительный организм обладает способностью к определенной ориентировке своих органов в пространстве. Реагируя на внешние воздействия, растения меняют ориентировку органов. Различают движения отдельных органов растения, связанные с ростом — ростовые и с изменениями в тургорном напряжении отдельных клеток и тканей — тургорные. Ростовые движения, в свою очередь, бывают двух типов: тропические движения, или тропизмы,— движения, вызванные односторонним воздействием какого-либо фактора внешней среды (света, силы земного притяжения и др.); настические движения, или настии,— движения, вызванные общим диффузным изменением какого-либо фактора (света, температуры и др.). В зависимости от фактора, вызывающего тропические движения, различают геотропизм, фототропизм, хемотропизм, тигмотропизм, гидротропизм. Геотропизм — движения, вызванные односторонним влиянием силы тяжести. Если положить проросток горизонтально, то через определенный промежуток времени корень изгибается вниз, а стебель — вверх. Еще в начале ХIХ в. был изобретен прибор клиностат. В этом приборе проросток в горизонтальном положении привязывается к вращающейся оси. Благодаря этому сила притяжения действует попеременно на нижнюю и верхнюю стороны проростка. В этом случае рост проростка идет строго горизонтально и никаких изгибов не наблюдается. Эти опыты доказали, что изгибы стебля и корня связаны с односторонним действием силы земного притяжения. Изгиб корня вниз (по направлению действия силы притяжения) называют положительным геотропизмом.
Тропизмы и настии: 1 — геотропизм; 2 — фототропизм; 3 — термонастии; 4 — фотонастии.
Геотропическая реакция — «пороговое» явление, т. е. геотропический изгиб происходит лишь при достижении раздражителем какого-то определенного уровня. Количество раздражителя равно силе гравитации, умноженной на время. Для того чтобы произошел изгиб, проросток должен быть выдержан в горизонтальном положении определенное время (время презентации). Если проростки выдержать это время в горизонтальном положении, а затем поместить вертикально, то все равно изгиб произойдет. При строго горизонтальном положении проростка время презентации наименьшее. Чем ближе положение проростка к вертикальному, тем больше время презентации. Это понятно, так как сила земного притяжения наибольшая при горизонтальном положении. Время презентации составляет примерно 3—5 мин. Время, необходимое для проявления изгиба, — 45—60 мин. Направление геотропической реакции может изменяться в процессе роста организма, а также в зависимости от условий среды. Так, для цветоножки мака до распускания бутона характерен положительный геотропизм, а после распускания цветков — отрицательный. При пониженной температуре отрицательный геотропизм стебля может переходить в диагеотропизм (стелющиеся формы).
Фототропизм — движения, вызванные неравномерным освещением разных сторон органа. Если свет падает с одной стороны, стебель изгибается по направлению к свету — положительный фототропизм. Корни обычно изгибаются в направлении от света — отрицательный фототропизм. Ориентировку пластинок листьев перпендикулярно к падающему свету (при большой интенсивности света) называют диафототропизмом. Для восприятия одностороннего освещения также необходимо определенное время презентации, которое зависит от силы одностороннего освещения. В зависимости от возраста растения и от условий среды направление фототропических изгибов может меняться. Так, у настурции до цветения для стебля характерен положительный фототропизм, а после созревания семян — отрицательный.
Хемотропизм — это изгибы, связанные с односторонним воздействием химических веществ. Хемотропические изгибы характерны для пыльцевых трубок и для корней растений. Если пыльцу положить на предметное стекло в среду, содержащую сахарозу, и одновременно поместить туда кусочек завязи, все пыльцевые трубки в процессе роста изогнутся по направлению к завязи. Корни растений изгибаются по направлению к питательным веществам. Если питательные вещества не перемешаны со всей почвой, а распределяются отдельными очагами, корни растут по направлению к этим очагам. Такая способность корней определяет большую эффективность гранулированных удобрений. Корни растут по направлению к отдельным гранулам, содержащим питательные вещества. При таком способе внесения питательных веществ создается также повышенная концентрация их около корня, что обусловливает их лучшую усвояемость.
Гидротропизм — это изгибы, происходящие при неравномерном распределении воды. Для корневых систем характерен положительный гидротропизм.
Аэротропизм — ориентировка в пространстве, связанная с неравномерным распределением кислорода. Аэротропизм свойствен в основном корневым системам.
Тигмотропизм — реакция растений на одностороннее механическое воздействие. Тигмотропизм свойствен лазающим и вьющимся растениям.
Настические движения бывают двух типов: эпинастии — изгиб вниз и гипонастии — изгиб вверх. В зависимости от фактора, вызывающего те или иные настические движения, различают термонастии, фотонастии, никтинастии и др.
Термонастии — движения, вызванные сменой температуры. Ряд растений (тюльпаны, крокусы) открывают и закрывают цветки в зависимости от температуры. При повышении температуры цветки раскрываются (эпинастические движения), при снижении температуры закрываются (гипонастические движения).
Фотонастии — движения, вызванные сменой света и темноты. Цветки одних растений (соцветия одуванчика) закрываются при наступлении темноты и открываются на свету. Цветки других растений (табака) открываются с наступлением темноты.
Никтинастии («никти» — ночь) — движения цветков и листьев растений, связанные с комбинированным изменением, как света, так и температуры. Такое комбинированное воздействие наступает при смене дня ночью. Примером являются движения листьев у некоторых бобовых, а также у кислицы. К ростовым движениям относятся и круговые движения концов молодых побегов и кончиков корней относительно оси. Такие движения называют круговые нутации. Примерами являются движения стеблей вьющихся растений (хмель), усиков лазящих растений. Это необходимо для поиска опоры при движении к свету стеблей.
Тургорные движения. Не все настические движения относятся к ростовым. Некоторые связаны с изменением тургора. К ним относятся никтинастические движения листьев. Так, для листьев многих растений характерны ритмические движения — у клевера наблюдается поднятие и складывание листочков сложного листа ночью. Этот тип движений связан с изменением тургора в специализированных клетках листовых подушечек.
Сейсмонастии — движения, вызванные толчком или прикосновением, например движение листьев у венериной мухоловки или у стыдливой мимозы. В результате прикосновения листья мимозы опускаются, а листочки складываются. Реакция происходит чрезвычайно быстро, спустя всего 0,1 с. При этом раздражение распространяется со скоростью 40—50 см/с. Сейсмонастические движения листьев мимозы могут происходить и под влиянием местных тепловых, электрических или химических воздействий. Эти движения связаны с потерей тургора нижней стороны листа. Значение подобной двигательной реакции заключается в предотвращении повреждений от ливневых дождей и сильных ветров.
Автонастии — самопроизвольные ритмические движения листьев, не связанные с какими-либо изменениями внешних условий. Так, листья тропического растения десмидиум претерпевают ритмические колебания.
43. Физиологические основы покоя растений. Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов, периоды покоя. В покоящееся состояние может вступать как растительный организм в целом, так и отдельные его части (семена, корни, клубни). В некоторых случаях растительный организм может находиться в растущем состоянии, а отдельные почки — в покоящемся (спящем). Переход растения или его отдельных органов в покоящееся состояние, прежде всего, является приспособлением к перенесению неблагоприятных условий. В большинстве районов земного шара наблюдается периодическое наступление времен года, неблагоприятных для растений. Это периоды низкой температуры или пониженной влажности. В этих случаях растение сохраняет жизнеспособность лишь при условии перехода в состояние покоя. Переход в покоящееся состояние часто сопровождается утратой (опадением) отдельных органов (листьев) или даже целых побегов. Именно в таком состоянии многолетние растения переживают зимний период. Таким образом, переход растения в покоящееся состояние предохраняет его от гибели под влиянием мороза или сильной засухи. Однако покой — это не только защитная реакция организма против неблагоприятных условий. Растения переходят в покоящееся состояние и при наличии всех условий, необходимых для роста. Временная приостановка ростовых процессов характерна и для тропических растений, несмотря на благоприятные условия в течение целого года. Если растение не прошло периода покоя, в последующем темпы роста его снижаются, ухудшается плодоношение. После периода покоя рост растений усиливается.
Таким образом, в период покоя, по-видимому, происходят определенные изменения, подготавливающие последующий рост. Все сказанное позволяет считать, что период покоя — не только приспособление к неблагоприятным условиям, но и необходимое звено онтогенеза растений. Различают покой вынужденный и глубокий. Эти виды покоя находятся в разной зависимости от внешних условий. Вынужденный покой вызван неблагоприятными условиями. Обычно растительный организм вступает в вынужденный покой при отсутствии какого-то фактора, необходимого для ростовых процессов. Как только этот фактор изменяется в благоприятном направлении, ростовые процессы возобновляются. Сухие семена не прорастают до тех пор, пока не будет достаточного количества воды. Некоторым семенам для прорастания необходим свет. Весной почки не распускаются, пока температура не поднимется до определенного предела. Таким образом, растение или орган, как только будут обеспечены всеми необходимыми условиями для роста, легко выходят из вынужденного покоя. Растения или органы, находящиеся в глубоком покое, не переходят к росту даже при наличии благоприятных условий. Из глубокого покоя растительные организмы выходят лишь по окончании определенных физиолого-биохимических изменений, подготавливающих последующий рост. Вынужденный и глубокий покой могут совпадать во времени. Характер покоя различен, различны и части растения, впадающие в состояние покоя. Однако есть и общие черты, характеризующие покоящееся состояние. Это отсутствие видимого роста. В период покоя может происходить скрытый рост. Так, наблюдения показывают, что в зимний период почки несколько увеличиваются в размерах. Наряду с замедлением роста в период покоя уменьшается интенсивность всех процессов обмена.
44.Покой семян и почек растений. Покой семян может быть вызван рядом внешних и внутренних факторов. Семена могут быть в состоянии вынужденного и глубокого покоя. Процесс прорастания семян проходит ряд этапов, причем первые этапы не сопровождаются видимыми проявлениями роста и требуют определенных условий. Однако иногда бывает, что все условия соблюдены, а семена не прорастают. Это может быть связано с различными причинами. Семена многих растений, особенно относящихся к семейству бобовых, отличаются твердой оболочкой, непроницаемой для воды и кислорода. В зависимости от условий, в которых образуются семена, проницаемость их оболочки меняется. Например, семена белого клевера, формирующиеся в жаркий и сухой период, как правило, имеют твердую оболочку, плохо проницаемую для воды. Наоборот, при влажной погоде формируются семена с мягкой, хорошо проницаемой оболочкой. Семена некоторых растений имеют оболочку, проницаемую для воды, но непроницаемую для газов. Это хорошо показано на семенах дурнишника. Плод этого растения имеет две семянки. Расположенная внизу семянка прорастает в первый год, верхняя — не ранее чем через год. Оказалось, что семенная кожура верхней семянки плохо проницаема для кислорода. На протяжении года семенная оболочка верхней семянки разрушается микроорганизмами, и семена прорастают. Повышенная концентрация кислорода стимулирует раннее прорастание семян овсюга и некоторых других растений. Причина положительного влияния кислорода на прорастание семян может быть двоякой. С одной стороны, кислород необходим для поддержания на достаточном уровне процесса дыхания, а с другой — для окисления веществ, тормозящих процесс прорастания. Наконец, бывают случаи, когда твердая семенная оболочка задерживает рост самого зародыша. Если семена не прорастают из-за твердой оболочки, можно считать, что они находятся в состоянии вынужденного покоя. Однако у многих видов растений семена сразу после их созревания не способны к прорастанию, так как находятся в состоянии глубокого покоя, которое, в свою очередь, может быть связано с несколькими причинами. У некоторых растений ко времени высвобождения семян из плодов зародыш еще недоразвит. Развитие зародыша продолжается в семени. В этом случае семена становятся способными к прорастанию только после определенного промежутка времени и при наличии соответствующих условий. Большое значение в поддержании состояния глубокого покоя имеет наличие ингибиторов роста, которые могут содержаться как в самих семенах (в оболочке, эндосперме), так и в мякоти плодов. Именно благодаря наличию ингибиторов семена не прорастают внутри сочных плодов. Одновременно с повышенным содержанием ингибиторов роста семя в состоянии глубокого покоя содержит крайне мало фитогормонов, таких, как гиббереллины и цитокинины. При работе с арабидопсисом были получены мутанты с разной степенью покоя, который мог быть прерван охлаждением. Показано, что накапливают семена, обладающие способностью перехода в покой, АБК. Поэтому переход в покой сопровождается увеличением АБК и уменьшением гиббереллинов и цитокининов.
Согласно данным американского физиолога А. Кана, семена выходят из состояния глубокого покоя (способны к прорастанию) в том случае, если в них отсутствуют ингибиторы роста и присутствует фитогормон гиббереллин. В присутствии ингибиторов роста для выхода из покоя необходимо наличие уже двух фитогормонов — гиббереллина и цитокинина. Особенное значение среди ингибиторов прорастания семян имеет АБК. Показано, что в сухих семенах содержание АБК высокое и по мере прорастания оно убывает. При намачивании семян АБК вымывается, и это ускоряет прорастание. Таким образом, покой и прорастание семян регулируются соотношением фитогормонов. Особенное значение имеет соотношение гиббереллины/АБК. У ряда растений созревшие семена становятся способными к прорастанию только после определенного периода, в течение которого в них происходят сложные биохимические процессы (послеуборочное дозревание). В природе период послеуборочного дозревания длится обычно в течение всей зимы. Это имеет большое приспособительное значение: именно благодаря этому семена прорастают тогда, когда создаются благоприятные условия для их последующего роста.
Процессы роста сосредоточены в почках, поэтому они в первую очередь и вступают в покоящееся состояние. В состоянии покоя могут находиться не все почки, расположенные на данном растении, а лишь отдельные. Покоящиеся почки (глазки) характерны не только для всего организма, но и для его отдельных частей (клубней, корневищ). Само покоящееся состояние почек приходится на период пониженных температур, и, следовательно, изменения, подготавливающие дальнейший рост, обычно также бывают при пониженных температурах. Вступление же в период покоя происходит еще при достаточно высоких температурах. По-видимому, сигналом для вступления в покой служит определенное соотношение дня и ночи (определенный фотопериод). Растения вступают в покой под влиянием укороченного дня и выходят из него под влиянием длинного дня. Фотопериодическая реакция в случае вступления почек в покой сходна с фотопериодической реакцией, обусловливающей цветение растений. Так, оказалось, что именно длительность темнового периода (длинная ночь) определяет вступление растений в период покоя. Органом, воспринимающим фотопериодический стимул, являются или листья, или, у некоторых растений, почки. Под влиянием укороченного дня в растении вырабатываются ингибиторы роста (абсцизовая кислота, этилен, фенольные соединения), что и вызывает замедление физиологических процессов в почках. Одновременно происходит уменьшение содержания таких фитогормонов, как гиббереллины. Противоположные изменения характерны для почек, переходящих из покоящегося состояния к росту: накопление ауксинов, гиббереллинов и исчезновение ингибиторов (В.И. Кефели, Р.Х. Турецкая). Поскольку фитогормоны и ингибиторы имеют общих предшественников, то в зависимости от условий (длины дня, температуры) может осуществляться преимущественное образование или ингибиторов роста (абсцизовой кислоты, этилена, фенольных соединений), или таких фитогормонов, как ауксин, гиббереллины, цитокинины. Продолжительность периода покоя связана со скоростью разрушения ингибиторов роста. Покоящиеся почки растения характеризуются сниженным метаболизмом. Однако в них идут определенные процессы обмена, в частности не прекращается процесс дыхания.
Имеются данные, что в этот период происходит накопление предшественников нуклеиновых кислот, идет определенная дифференциация клеточных структур. Именно это подготавливает последующую активацию ростовых процессов. Одновременно при вступлении в период покоя происходит ряд процессов, повышающих устойчивость клеток к неблагоприятным условиям. Так, по данным П.А. Генкеля, при переходе в глубокий покой в клетках происходит процесс обособления цитоплазмы. Это выражается в том, что плазмодесмы втягиваются внутрь клеток, а плазмалемма отстает от клеточной оболочки. Поверхность цитоплазмы часто покрывается слоем липидов. Вязкость цитоплазмы возрастает. Благодаря отставанию цитоплазмы от клеточной оболочки скорость плазмолиза возрастает, несмотря на то что ее вязкость увеличивается. Процесс обособления цитоплазмы вызывает нарушение связей между клетками, что, в свою очередь, приводит к снижению интенсивности процессов обмена. Отставание цитоплазмы от клеточных оболочек, а также накопление липидов в поверхностном слое делают ее более устойчивой.
45. Развитие растений: этапы и процессы. Развитие каждого растительного организма, так же как и животного, расчленимо, т. е. оно проходит ряд этапов. Эти этапы характеризуются морфологическими и физиологическими признаками. Физиологические критерии этапов развития изучены слабо. При выделении этапов используют, главным образом, морфологические признаки. Для семенных растений можно выделить следующие этапы развития (М.Х. Чайлахян):
1) эмбриональный — от оплодотворения яйцеклетки до прорастания зародыша. Этот этап можно разделить на два периода:
а) эмбриогенез — период, в котором эмбрионы находятся на материнском растении;
б) покой — период от конца формирования семени и до его прорастания;
2) молодости (ювенильный) — от прорастания зародыша до закладки цветочных зачатков, характеризующийся усиленным ростом;
3) зрелости — от момента закладки цветочных зачатков до оплодотворения (появления новых зародышей);
4) размножения— от оплодотворения до полного созревания семян;
5) старости — от периода созревания семян до отмирания.
Поликарпические растения этапы эмбриональный и молодости проходят один раз, однако часто эти этапы характеризуются большой продолжительностью (несколько лет). Этапы зрелости и размножения наступают один раз, но осуществляются многократно. Этап старости у поликарпических растений также может продолжаться несколько лет. На протяжении каждого из перечисленных этапов развития в растении возникают новые органы. Процесс формирования этих органов называют органогенезом. Этот процесс можно изучить путем микроскопических наблюдений за дифференциацией верхушечных меристем и изменениями в формирующихся органах. Для одно- и двулетних растений выделено 12 последовательных этапов органогенеза. При этом на I и II этапах происходит дифференциация вегетативных органов, на III и IV—дифференциация зачаточного соцветия, на V—VIII — формирование цветков, на IХ — оплодотворение и образование зиготы, на X— XII — рост и формирование семян (Ф.М. Куперман). Основой морфологических, структурных изменений является изменение физиолого-биохимических процессов. Именно поэтому, как правило, внутренние физиолого-биохимические изменения предшествуют морфологическим. Однако проявляется и обратная зависимость. Вновь появившиеся структуры, органы оказывают влияние на уровень и направленность процессов метаболизма. Таким образом, можно считать, что есть единый процесс физиолого-биохимических и морфологических изменений. При этом физиолого-биохимические изменения, определяющие наступление последующего этапа, происходят в структурах, образовавшихся на предыдущем этапе развития организма. Старение и смерть как этапы программы онтогенеза. Старение — активный процесс развития, который зашифрован в генетической программе и регулируется специфическими сигналами или импульсами, возникающими под влиянием условий среды. Во время процессов старения экспрессия большинства генов затухает.
Однако экспрессия некоторых генов наоборот возрастает. Активируются гены, которые кодируют белки-ферменты, вызывающие процессы распада (протеазы, нуклеазы, липазы, ферменты, разрушающие хлорофилл и др.). Программированная смерть у растений в отличие от животных изучена мало. Показано, что программированная смерть клетки вызывается специальными сигналами и в свою очередь вызывает экспрессию ряда генов. Программированная смерть, сопровождаемая определенными морфологическими и биохимическими изменениями, суммируется как апоптоз — генетически детерминированная смерть клеток, которая является обязательной частью развития клеток. Показано, что апоптоз у растений сходен с таковым у животных, но имеются структурно-морфологические различия, связанные с наличием у растений вакуоли и клеточной стенки. Апоптоз может проявляться на самых различных органах и тканях организма: колеоптили, лепестки цветка, корни, эндосперм и другие. При апоптозе происходит ряд изменений: реорганизуется цитоплазма, изменяется фрагментация ДНК, наблюдается распад ядра. Апоптоз зависит от ряда внешних и внутренних факторов (инфекции, различные стрессоры). Важнейшая функция запрограммированной смерти клеток для растений — защита от патогенных организмов. При заражении в клетках быстро накапливаются фенольные соединения, и они отмирают. Это проявляется в образовании на органах растения круглых пятен мертвых клеток — некрозов. Роль некротических пятен заключается в изоляции токсических веществ для защиты здоровых органов. Возникновение некрозов является формой запрограммированной смерти клеток. На мутантах арабидопсиса показано, что под влиянием инфекции в них происходит каскад растворений и появляются некротические пятна. Непосредственной причиной смерти клеток у мутантов является аккумуляция перекисных соединений кислорода. Апоптоз регулируется гормональной системой, что связано с контролем над метилированием ДНК. Так, показано, что АБК стимулирует изменения ДНК, происходящие при апоптозе. Существуют данные, что процесс деметилирования ДНК ответственен за индукцию генов апоптогенных белков или за репрессию генов антиапоптозных генов (Б.Ф. Ванюшин). Наряду с апоптозом существует генетически запрограммированная смерть органов и организма в целом. Так, листья генетически запрограммированы для старения и смерти. Предложено называть процессы гибели отдельных органов органоптозом, а целого организма феноптозом (В.П. Скулачев). Запрограммированную смерть можно наблюдать при дифференцировке трахеид, когда разрушаются ядро и хроматин. После единственного акта цветения заканчивается жизнь у всех монокарпических растений.
46. Теория циклического старения и омоложения растений. На протяжении жизни в растении, как и во всяком живом организме, непрерывно происходят возрастные изменения. Процесс старения характерен для всех организмов. Однако у растений, в отличие от животных, процесс старения не непрерывен, он замедляется противоположным процессом — омоложения. Это связано с тем, что на растении до самого конца его жизни появляются не только новые клетки, но и новые органы — молодые листья, побеги. Новые, вновь появляющиеся органы замедляют процесс старения и оказывают омолаживающее влияние на весь растительный организм. Правда, это омоложение лишь частичное. Полное омоложение происходит лишь с возникновением нового организма при оплодотворении.Изучение возрастных изменений растительного организма позволило Н.П. Кренке создать теорию циклического старения и омоложения растения. Согласно этой теории, на физиологическое состояние вновь появляющегося органа оказывает влияние возраст целого материнского растительного организма. Чем старше растение, тем меньше физиологическая молодость вновь появляющегося органа. В силу этого различают календарный, или собственный, возраст и общий, или физиологический, возраст органа (листа, побега). Собственный, или календарный, возраст органа — это время, исчисляемое от его заложения до данного момента. Общий, или физиологический, возраст определяется календарным возрастом данного органа и возрастом материнского организма в целом к моменту его заложения. Так, листья одинакового календарного возраста, возникшие на молодом или старом организме, будут различаться по физиологическому возрасту. При определенном возрасте целого растения более нижние листья, появившиеся раньше и характеризующиеся большим календарным возрастом, могут быть физиологически более молодыми, поскольку они возникли на более молодом материнском организме. Для развития наиболее жизнеспособных побегов растение должно иметь определенный физиологический возраст. На самых молодых растениях возникают относительно слабые органы. По мере увеличения возраста материнского растения жизнеспособность возникающих органов возрастает. Затем, после достижения какой-то оптимальной величины, увеличение возраста материнского растения начинает сказываться отрицательно на жизнеспособности вновь появляющихся органов.Таким образом, соотношение процессов старения и омоложения в зависимости от этапов онтогенеза может быть выражено в виде одновершинной кривой, на восходящей части которой преобладают процессы омоложения, на нисходящей — процессы старения. Это находит подтверждение при наблюдениях за изменениями морфологических и физиологических процессов в листьях. Оказалось, что такие признаки, как форма и рассеченность листовой пластинки, длина черешка и другие претерпевают закономерные изменения в зависимости от яруса. При этом степень выраженности указанных признаков сперва возрастает, а затем падает. Процесс старения выражается в постепенном ослаблении физиологических процессов, в первую очередь биосинтеза белка. Это естественный процесс, подчиняющийся гормональному контролю. Условия среды, влияя на гормональный обмен, могут замедлять или ускорять этот процесс. Замедлению процессов старения растений способствует обильное снабжение водой, улучшение условий азотного питания. Это именно те условия, которые благоприятствуют накоплению ауксинов и цитокининов. Напротив, условия засухи способствуют накоплению абсцизовой кислоты и этилена, что ускоряет старение растений. Положения Н.П. Кренке оказались ценными для практики растениеводства. Так, при вегетативном размножении растений очень важно правильно установить физиологический возраст черенка, обеспечивающий его максимальную жизнеспособность. Известно, что качество чая зависит от возраста листьев. Оказалось, что для получения листьев нужного физиологического состояния надо брать с более старых кустов листья более молодого календарного возраста. Это же положение важно учитывать и при сборе листа с тутовых деревьев для кормления шелковичных червей.
47. Для многоклеточных организмов характерен тип регуляции, который связан с взаимодействием между отдельными клетками, тканями или даже органами. Для осуществления такой координации в организме вырабатываются гормоны. Гормоны растений получили название фитогормонов. Фитогормоны — это вещества, вырабатывающиеся в процессе естественного обмена веществ и оказывающие в ничтожных количествах регуляторное влияние, координирующее физиологические процессы. В этой связи к ним часто применяется термин — природные регуляторы роста. В большинстве случаев, но не всегда фитогормоны образуются в одних клетках и органах, а оказывают влияние на другие. Иначе говоря, гормоны способны к передвижению по растению и их влияние носит дистанционный характер. Большинство физиологических процессов, в первую очередь рост, формообразование и развитие растений, регулируется гормонами. Гормоны играют ведущую роль в адаптации растений к условиям среды. Известны следующие пять групп фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, газ этилен. В последнее время к ним относят брассины (брассиностероиды). Условно можно отнести первые три группы—ауксины, гиббереллины и цитокинины и частично брассины — к веществам стимулирующего характера, тогда как абсцизовую кислоту и этилен — к ингибиторам. Для успешного практического применения всех фитогормонов или их синтетических заменителей необходимо соблюдение определенных условий:1. Фитогормоны оказывают влияние лишь тогда, когда в растении их недостает. Это чаще всего наблюдается во время прорастания семян, цветения, образования плодов, а также когда нарушена целостность растительного организма, например, черенки, изолированные ткани. В некоторых случаях условия внешней среды препятствуют образованию гормонов, тогда этот недостаток может быть восполнен их экзогенным внесением.2. Как уже упоминалось, клетки, ткани, органы должны быть компетентны (восприимчивы) к фитогормонам. Компетенция связана с наличием рецепторов, а также с общим состоянием внутриклеточных процессов.Клетка может быть на одной фазе роста компетентна к внесению данного фитогормона, а на другой — нет.3. Необходимо достаточное снабжение растения водой и питательными веществами.4. Действие всех гормонов зависит от концентрации. Избыточная концентрация вызывает не стимуляцию, а резкое торможение роста и даже гибель растений.
5.Эндогенные (естественные) фитогормоны определенным образом локализованы в отдельных компартментах (отсеках) клетки. При внесении извне распределение гормонов будет иным. В этой связи экзогенное внесение не может полностью заменить гормоны, образовавшиеся при естественном метаболизме.
В настоящее время фитогормоны применяются в следующих направлениях.
Ауксины и их синтетические заменители:
1.Для усиления корнеобразования у черенков (Р.Х. Турецкая). Обработка нижних концов черенков ИУК в концентрации 50 мг/л или ее синтетическими аналогами (индолилмасляной, а-нафтилуксусной кислотой) вызывает приток к ним питательных веществ, при этом процесс корнеобразования усиливается. Этот прием широко применяется при вегетативном размножении растений.2. Для усиления корнеобразования и восстановления корневой системы при пересадке растений. Для этого саженцы окунают в пасту из глины с добавлением ИУК или ИМК.
3. Для образования партенокарпических плодов, повышения урожая томатов и некоторых других культур. Опрыскивание цветков томатов раствором синтетических регуляторов роста типа ауксина (например, трихлорфеноксиуксусной кислотой в концентрации 50 мг/л) приводит к образованию партенокарпических бессемянных плодов. Плоды растут быстрее и характеризуются более высоким содержанием Сахаров. Одновременно с усилением роста плодов в результате перераспределения питательных веществ рост вегетативных органов (пасынков) замедляется. К недостаткам этого приема следует отнести большую подверженность образующихся плодов различного рода заболеваниям.
4 Для предохранения плодов от предуборочного опадения. При большом количестве завязавшихся плодов часть их опадает до созревания. Регуляторы типа ауксина, вызывая дополнительный приток питательных веществ к плодам, препятствуют образованию отделительного слоя. Обработка деревьев проводится а-нафтилуксусной кислотой в концентрации 10 мг/л за две недели до уборки.
5. Для ускорения прорастания семян некоторых растений. Этот прием дает благоприятные результаты лишь на мелкосемянных растениях, поскольку крупные семена содержат достаточное количество собственных гормонов. Хорошие результаты получены при обработке семян сахарной свеклы ИУК в концентрации 10 мг/л.
6. В высоких концентрациях регуляторы роста типа ауксина, например 2,4-дихлорфеноксиуксусная кислота (2,4-Д), могут применяться как селективные гербициды. Поскольку для разных видов растений оптимальные концентрации фитогормонов различны, то это позволяет использовать 2,4-Д в качестве селективного гербицида для борьбы с сорняками в посевах злаковых культур. Исследованиями (Ю.В. Ракитин, В.А. Земская) показано, что различная устойчивость растений к 2,4-Д связана с различиями в скорости ее детоксикации (обезвреживания) в растительном организме.
Гиббереллины.1. Под влиянием гиббереллина заметно усиливается рост стебля конопли, сахарного тростника. Увеличивается выход волокна конопли с гектара.2.Опрыскивание в концентрации 25 мг/л повышает урожай зеленой массы кормовых бобов. Увеличивается продуктивность растений, возделываемых для получения зеленой массы. Однако урожай семян при этом снижается.Широкое применение получили этиленпродуценты — соединения, которые после опрыскивания растении распадаются с образованием этилена. Наиболее распространенным этиленпродуцентом является 2-хлорэтилфосфоновая кислота СlСН2СН2РО(ОН)2, которая при значении рН > 4 распадается с выделением этилена. Известно много препаратов, содержащих 2-ХЭФК: этрел, гидрел, кампозан, этефон.
Этилен-продуценты применяют:
1. Для ускорения созревания плодов.2. Для ускорения созревания и облегчения уборки томатов, яблок, облепихи, винограда, цитрусовых, поскольку ускоряется образование отделительного слоя в плодоножке.
3. Для усиления отделения латекса у каучуконосных деревьев гевеи, ускорять выделение живицы у сосны.
4. Для ускорения опадения листьев — дефолиации. Дефолиация облегчает условия машинной уборки ряда культур, например хлопчатника.5. Для индукции цветения манго, авокадо, ананасов и других культур.
6. Обработка этиленом растений огурца вызывает преимущественное образование женских цветков.
7. Для борьбы с полеганием зерновых культур в посевах, например, ржи и ячменя, поскольку этиленпродуценты способствуют формированию укороченного толстого стебля.
48. Ауксины — это вещества индольной природы. Основным фитогормоном типа ауксина является b-индолилуксусная кислота (ИУК). Открытие ауксинов связано с исследованиями Ч. Дарвина (1860). Дарвин установил, что, если осветить проросток злака с одной стороны, он изгибается к свету. Однако, если на верхушку проростка надеть непроницаемый для света колпачок и после этого поставить в условия одностороннего освещения, изгиба не происходит. Таким образом, органом, воспринимающим одностороннее освещение, является верхушка растения, тогда как сам изгиб происходит в нижней части проростка. Из этого Ч. Дарвин заключил, что в верхушке проростка под влиянием одностороннего освещения вырабатывается вещество, которое передвигается вниз и вызывает изгиб. Идеи Ч. Дарвина получили развитие лишь через 50 лет в работах датского исследователя П. Бойсен-Йенсена, который показал, что если срезанную верхушку вновь наложить на колеоптиль через слой желатины, то при одностороннем освещении наблюдается изгиб к свету. Было показано также, что удаление верхушки проростка (декапитация) резко замедляет рост нижележащих клеток, находящихся в фазе растяжения. При обратном накладывании верхушки проростка через слой желатина или агар-агара рост нижележащих клеток возобновляется. Далее исследования Вента показали, что, если срезанную верхушку поместить на блок из агар-агара, а затем наложить этот блок на декапитированный колеоптиль, рост возобновляется. Если агаровый блок, на котором в течение некоторого времени была помещена верхушка колеоптиля, наложить на обезглавленный колеоптиль асимметрично, то происходит изгиб, причем более интенсивно растет та сторона, на которую наложен блок. Все эти опыты привели к выводу, что в верхушке проростков вырабатывается особое вещество, которое, передвигаясь к нижележащим клеткам, регулирует их рост в фазе растяжения. Поскольку это вещество вырабатывается в одной части растения, а в другой вызывает физиологический эффект, оно было отнесено к гормонам роста растения — фитогормонам. Исследования, проведенные академиком Н.Г. Холодным, показали, что рост различных видов растений, а также различных органов одного и того же растения регулируется одним и тем же гормоном — ауксином. Оказалось, что фитогормоны типа ауксина — b-индолилуксусная кислота (ИУК) и некоторые близкие к ней соединения — широко распространены в растениях. Наиболее богаты ауксинами растущие части растительного организма: верхушки стебля, молодые растущие части листьев, почки, завязи, развивающиеся семена, а также пыльца. Образование ауксинов в большинстве случаев идет в меристематических тканях. Ауксины передвигаются из верхушки побега вниз к его основанию, а далее от основания корня к его окончанию. Таким образом, передвижение ауксинов полярно. Полярное передвижение ауксинов идет по проводящим пучкам со скоростью, значительно превышающей скорость обычной диффузии (5—10 мм/ч). Тем не менее, скорость передвижения ауксина по флоэме в 100 раз медленнее, чем ассимилятов. По-видимому, это активный процесс, требующий затраты энергии. Недостаток кислорода, торможение процесса дыхания с помощью различных ингибиторов приостанавливают передвижение ауксинов. Во взрослом дифференцированном растении при высокой концентрации гормона может наблюдаться и неполярное передвижение ауксинов вверх по растению с током воды по ксилеме.
Ауксин, образующийся в кончике корня, может, по-видимому, передвигаться на короткие расстояния вверх, в зону растяжения. При изучении процессов синтеза ИУК, его транспорта и распределения между отдельными компартментами клетки большое значение имели опыты с мутантами. Основным источником для образования b-индолилуксусной кислоты (ИУК) является аминокислота триптофан. В свою очередь триптофан образуется из шикимовой кислоты. Однако в последнее время обнаружен триптофан-независимый синтез ауксина. Для экспериментов использовали проростки кукурузы с мутациями в области генов, кодирующих образование триптофансинтазы — фермента заключительной стадии синтеза ауксина из триптофана. Установлено, что ИУК может синтезироваться из индола и индолглицерофосфата. Содержание ИУК зависит не только от скорости образования, но и от быстроты разрушения. Основным ферментом разрушения ИУК является ИУК-оксидаза (ОИУК). Можно полагать, что в некоторых случаях отсутствие влияния ИУК, внесенной извне, связано с быстрым ее окислением ИУК-оксидазой. Наряду с ферментативным окислением ИУК большое значение имеет ее разрушение на свету (фотоокисление). Особенно сильное разрушающее действие на ИУК имеют ультрафиолетовые лучи с длиной волны около 280 нм. Другим путем разрушения ИУК является декарбоксилирование. В 1995 г. показано присутствие в клетках конъюгированного, т. е. связанного ауксина, который, как правило, неактивен. Установлена возможность конъюгации ауксина с глюкозой, амидами, глюканом. Клонирован ген, кодирующий фермент этой реакции. Предполагают, что конъюгация является механизмом регулирования содержания свободного ауксина. В клетках ауксин содержится в цитозоле и хлоропластах. Соотношение этих пулов регулируется значением рН среды. Таким образом, по современным представлениям основными факторами, влияющими на содержание ауксина в растительных клетках являются следующие: триптофан-зависимый синтез ауксина, триптофан-независимый синтез ауксина, транспорт, окисление и декарбоксилирование, конъюгация. Внешние условия оказывают значительное влияние на образование ИУК. Показано, что образование ИУК зависит от снабжения растения азотом, обеспечения растения водой. Освещение уменьшает содержание ауксинов, а затемнение увеличивает. Большое влияние на содержание ауксинов оказывает эпифитная микрофлора. Под влиянием микроорганизмов содержание ауксинов у высших растений заметно возрастает. По-видимому, именно через изменение содержания фитогормонов осуществляется первоначальное влияние условий внешней среды на процессы обмена веществ и рост. Содержание ауксинов меняется и в процессе онтогенеза растительного организма. Обычно в листьях максимум содержания ауксинов наступает в фазу бутонизации или цветения. Распускающиеся почки, прорастающие семена содержат большое количество ауксина. В период, когда процессы роста прекращаются (период покоя), содержание ауксинов падает (В.И. Кефели). Как правило, между содержанием ауксинов и скоростью роста клеток имеется прямая зависимость. Она хорошо проявляется и при внесении ауксинов извне. В целом регуляция образования и разрушения ИУК — это один из способов регуляции ее содержания, а следовательно, и процессов роста. Согласно современным представлениям, для проявления активности фитогормонов необходимо создание комплекса с белком-рецептором (гормон-рецепторный комплекс). В этой связи большое значение имеет способность ауксинов (ИУК) образовывать связи с различными соединениями, в частности с белками. Уже обнаружен растворимый ауксинсвязывающий белок, который является рецептором. Он активен в эндоплазматическом ретикулуме и на поверхности клеток.
49. Открытие гормонов растений гиббереллинов связано с изучением болезни риса. В юго-восточных странах, в частности в Японии, распространена болезнь риса «баканэ», или болезнь дурных побегов. У растений, пораженных этой болезнью, вытянутые бледные побеги. Японские ученые показали, что эта болезнь вызывается выделением гриба Gibberella fujikuroi. Из выделений этого гриба было получено кристаллическое вещество — гиббереллин. В дальнейшем выяснилось, что гиббереллины — широко распространенные среди растений вещества, обладающие высокой физиологической активностью и являющиеся, подобно ауксинам, естественными фитогормонами. В настоящее время известно более 80 веществ, относящихся к группе гиббереллинов и обозначающихся номерами: ГА1 ГА2 и др. Не все гиббереллины обладают физиологической активностью. По химической структуре это производные дитерпенов — дитерпеноиды, состоящие из четырех изопреновых остатков. Наиболее распространенный гиббереллин А3 — гибберелловая кислота (ГК). Остальные гиббереллины различаются в основном по структуре боковых цепочек. Растения на разных этапах онтогенеза могут различаться по набору гиббереллинов, активность которых может быть различной. Гиббереллины могут образовываться в разных, по преимуществу растущих частях растительного организма. Все же основное место синтеза гиббереллинов — это листья. Имеются данные, что гиббереллины образуются в пластидах. По-видимому, гиббереллины существуют в двух формах — свободной и связанной. Нередко наблюдаемое повышение содержания гиббереллинов связано с переходом их из связанной в свободную (активную) форму. Так, гиббереллины способны связываться с сахарами, например с глюкозой. Образующиеся гиббереллингликозиды накапливаются главным образом в семенах. В отличие от ауксинов гиббереллины передвигаются из листьев как вверх, так и вниз, как по ксилеме, так и по флоэме. Это пассивный процесс, не связанный с метаболизмом. Образование гиббереллина в хлоропластах идет путем превращения мевалоновой кислоты в геранилгераниол и далее через каурен в гибберелловую кислоту. Мевалоновая кислота является предшественником как гиббереллина и цитокинина, так и важнейшего природного ингибитора роста — абсцизовой кислоты. Показано, что существует другой путь синтеза гиббереллинов, не зависящий от мевалоновой кислоты и локализованный в цитоплазме. Внешние условия оказывают влияние на образование и содержание гиббереллинов в растении. Во многих случаях под влиянием одного и того же внешнего фактора содержание ауксинов и гиббереллинов изменяется противоположным образом. Так, освещение увеличивает содержание гиббереллинов и уменьшает содержание ауксина. Большое влияние на содержание гиббереллинов оказывает качество света. При выращивании растений на красном свете в них содержится больше гиббереллинов по сравнению с выращиванием на синем свете.
Биосинтез b-индолилуксусной кислоты и гиббереллина.Улучшение питания растений азотом увеличивает содержание ауксинов, а содержание гиббереллинов при этом снижается. Противоположные изменения в содержании ауксинов и гиббереллинов позволяют предполагать, что и в образовании этих двух фитогормонов имеется общий предшественник. Им может быть ацетил-КоА. При его участии образуется как мевалоновая, так и b-кетоглутаровая кислота. Последняя является одним из предшественников при образовании ауксина через триптофан. В некоторых случаях наблюдается одновременное падение содержания как ауксинов, так и гиббереллинов. Так, уменьшение влажности почвы, выращивание растений в стерильных условиях снижают содержание как того, так и другого фитогормона. Содержание гиббереллинов меняется в процессе онтогенеза растительного организма. Очень сильно возрастает содержание гиббереллинов в процессе прорастания семян. Возможно, что в этом случае гиббереллины частично переходят из связанного в свободное состояние. Содержание гиббереллинов в листьях разных растений (кормовых бобов, сои, картофеля) в процессе их онтогенеза изменяется в соответствии с одновершинной кривой, возрастая вплоть до цветения, а затем уменьшаясь. Наиболее общим и ярким проявлением физиологического действия гиббереллина является его способность резко усиливать рост стебля у карликовых форм различных растений. Причины карликовости различны. Генетическая карликовость вызвана изменениями на генном уровне и может быть связана с нарушениями в синтезе гиббереллинов. Вместе с тем карликовость может быть обусловлена накоплением ингибиторов. В этом случае внесение гиббереллина лишь нейтрализует их действие. Обычно карликовость выражается в уменьшении длины междоузлий стебля при сохранении их числа. Обработанные гиббереллином карликовые растения выравниваются по высоте с нормальными, однако в последующих поколениях карликовость продолжает сохраняться. Молекулярно-генетические исследования расширили наши представления об особенностях регуляции роста этим фитогормоном. Известно много мутантов, у которых отсутствует этот гормон. Как правило такие гиббереллин-дефектные мутанты — карликовые растения, которые отличаются от нормальных одним геном, который кодирует образование гиббереллинов.
50. Открытие цитокининов связано с обширными исследованиями по выращиванию каллуса, образовавшегося из изолированной ткани сердцевины стебля табака на питательной среде (Ф. Скут и К. Миллер). Было показано, что клетки каллуса в стерильной культуре через определенный промежуток времени прекращают деление. Однако при добавлении к питательной среде производных ДНК, получающихся после ее автоклавирования, деление клеток возобновляется. В 1955 г. было выделено активное начало, вызывающее деление клеток, — 6-фурфурила-минопурин, названное кинетином. 6-фурфуриламинопурин в растениях не встречается. Однако в растениях были найдены близкие химические соединения, регулирующие процесс деления клеток,— цитокинины. Один из цитокининов, выделенный из кукурузы, был назван зеатином. Все известные цитокинины — это производные пуриновых азотистых оснований, а именно аденина, в котором аминогруппа в шестом положении замещена различными радикалами.
Структура цитокининов.Соединения цитокининового типа обнаруживаются в растениях не только в свободном состоянии, но и в составе некоторых тРНК. Богаты цитокининами клетки апикальных побегов и меристем корня. Цитокинины образуются главным образом в корнях (О.Н. Кулаева) и пассивно в виде зеатинрибозида передвигаются в надземные органы по ксилеме. Цитокинины во многом определяют физиологическое влияние корневой системы на обмен веществ надземных органов (К. Мотес). Вместе с тем имеются данные об образовании цитокининов в семенах (зрелые зародыши) и развивающихся плодах. Нанесенные на лист синтетические цитокинины передвигаются плохо. Долгое время вопрос о синтезе цитокининов в растении оставался не ясным. Даже высказывались предположения, что цитокинины в растениях являются продуктом жизнедеятельности бактерий, которые живут на растениях (бактерии ризосферы). Открытия последних лет позволили установить, что цитокинины синтезируются в растениях. С помощью генной инженерии в 2001 г. из Arabidopsis thaliana был выделен ген, кодирующий ключевой фермент синтеза цитокининов — изопентенилтрансферазу и назван ipt-геном. Изопентенилтрансфераза катализирует синтез зеатина и рибозидзеатина из изопентенилпирофосфата. Фермент является нестабильным, что затрудняет его изучение. Поэтому исследования ведутся путем трансформации растений ipt-геном с использованием Т-ДНК Ti-плазмид. Изопентениловый остаток может образовываться из мевалоновой кислоты. Высказывается предположение, что цитокинины могут также образовываться при расщеплении тРНК. Содержание цитокининов определяется скоростью их синтеза и разложения. Распад цитокининов регулируется ферментом цитокининоксидазой.В литературе мало данных о влиянии условий среды на образование цитокининов. Имеются сведения, что улучшение питания растений азотом усиливает образование цитокининов. Вместе с тем и для проявления действия цитокининов необходимо достаточное снабжение растения питательными веществами, особенно азотом. Действие цитокининов, как и других фитогормонов, многофункционально. Цитокинины в первую очередь оказывают влияние на деление клеток, хотя в некоторых случаях могут регулировать и их растяжение. Особенно ярко влияние цитокининов на процессы деления проявляется на культуре изолированных тканей. На листьях целого растения показано соответствие активности цитокининов и скорости клеточных делений (А.Т. Мокроносов). Высказывается предположение, что цитокинины регулируют последнюю стадию деления, а именно цитокинез (деление самой клетки). Показано, что цитокинины стимулируют экспрессию специфического циклина и ускоряют переход от фазы g2 к митозу. Кроме того, они активируют рост растяжением изолированных листьев и семядолей у двудомных растений. Цитокинины также оказывают влияние на направление дифференциации клеток и тканей. Так, на стеблевом каллусе табака показано их участие в органообразовании.Влияние цитокининов тесно связано с присутствием ауксинов. Взаимосвязь в действии этих фитогормонов проявляется по-разному. В некоторых случаях действие цитокининов требует определенной концентрации ауксинов. В других случаях проявляется антагонизм этих фитогормонов. Цитокинины способствуют пробуждению и росту боковых почек. В опытах К. Тиманна обработка пазушных почек растворами кинетина устраняла тормозящее влияние верхушечных почек, вызывая их рост. В этом случае цитокинины являются как бы антагонистами ауксинов, которые задерживают рост боковых побегов (апикальное доминирование). Цитокинины задерживают старение листьев. Одним из показателей процесса старения является разрушение хлорофилла. Так, если срезанные листья выдерживать во влажной атмосфере, они постепенно желтеют. Анализы показывают, что в них происходит разрушение хлорофилла и белка. Обработанные цитокининами листья остаются в течение долгого времени зелеными. Цитокинины не только задерживают распад белка и хлорофилла, но и стимулируют синтез этих соединений (омолаживающее влияние). Показано усиление под действием цитокининов синтеза хлоропластных белков, в т. ч. тех, которые кодируются геномом ядра. Нельзя не отметить, что такое же омолаживающее влияние на листья проявляется при их укоренении. Это является еще одним доказательством, что цитокинины вырабатываются в корнях.
51. Открытие абсцизовой кислоты (АБК) связано с изучением двух явлений — покоя почек и опадения листьев и плодов. В 1961 г. Аддикот (США) установил, что имеются вещества, накопление которых вызывает образование отделительного слоя и опадение листьев. В это же время Ф. Уоринг (Англия) показал, что при переходе в покоящееся состояние в почках накапливаются вещества, тормозящие рост. В дальнейшем вещество, вызывающее опадение, было выделено из коробочек хлопчатника и получило название «абсцизин», от слова abscission — опадение, а из листьев березы — вещество, тормозящее рост, получившее название «дормин», от французского слова dort — спит. В дальнейшем оказалось, что это одно и то же вещество, относящееся к ингибиторам роста, которое и было названо абсцизовой кислотой. По химическому строению АБК представляет оптически активный сесквитерпеноид, состоящий из трех остатков изопрена. Активной является S(+)-форма. АБК, подобно гиббереллину, с которым по химической структуре имеет много общего, образуется из мевалоновой кислоты. Существуют два пути биосинтеза абсцизовой кислоты из мевалоновой кислоты. Один, так называемый прямой путь, через фарнезилпирофосфат (ФПФ) и непрямой, или каротиноидный. Во втором случае АБК образуется в результате деградации каротиноидов, при этом из ксантофилла образуется ингибитор ксантоксин, который затем превращается в АБК.
Структура абсцизовой кислоты.Основными органами синтеза АБК являются листья. АБК накапливается преимущественно в хлоропластах, и, в меньших количествах, в цитозоле и в вакуолях. При исследовании нефотосинтезирующих хлорофиллдефектных мутантов гороха и хлопчатника оказалось, что концентрация АБК в них значительно ниже, чем в зеленых на свету. Возможен синтез и в других органах растений, в частности в корнях. Так, в опытах с меченой мевалоновой кислотой показано, что корни винограда и гороха обладают автономной способностью к образованию этого фитогормона (В.И. Кефели, Е.Н. Кислин). Транспорт АБК осуществляется в восходящем и в нисходящем направлении, как по флоэме, так и по ксилеме. АБК содержится в различных органах растений, особенно в состоянии глубокого покоя. Она обнаружена в почках, сухих семенах, в клубнях картофеля. Показано, что содержание АБК резко повышается при недостатке азота и, особенно при водном дефиците. Так, имеются данные, что при завядании содержание АБК в листьях винограда возрастает в 40 раз. Под влиянием полива содержание АБК падает. Не только водный стресс, но и другие неблагоприятные воздействия повышают содержание АБК. При этом важно отметить высокую скорость в изменении содержания АБК в зависимости от условий. В этой связи АБК называют гормоном стресса. Содержание АБК повышается в почках при переходе растений в состояние покоя и уменьшается с началом ростовых процессов. Находящиеся в покое семена тоже характеризуются повышенным содержанием АБК.
АБК тормозит процессы роста, индуцированные ИУК, цитокинином и гиббереллином. Накопление АБК приводит к снижению фотосинтетического фосфорилирования (В.Т Старикова) и интенсивности фотосинтеза. Увеличение содержания АБК тормозит рост пазушных почек при апикальном доминировании, задерживает прорастание семян, влияет на переход в покоящееся состояние семян, почек, клубней. Обычно она накапливается перед наступлением зимних холодов, а ко времени окончания покоя ее содержание уменьшается. Ингибиторное действие АБК на прорастание семян и рост тканей в ряде случаев может сниматься обработкой гиббереллинами или цитокининами.В некоторых случаях АБК оказывает аттрагирующее влияние в формирующихся плодах, способствуя их созреванию, и обусловливает состояние покоя семян внутри плода. АБК регулирует опадение листьев и плодов. Обработка АБК вызывает старение и опадение листьев у ряда растений. АБК способствует образованию запасных белков, выступает антагонистом в индукции гиббереллином синтеза а-амилазы, а также вызванного цитокинином роста активности нитратредуктазы. Действие АБК показано на уровне регуляции экспрессии генов. Подавление ею роста связано с репрограммированием генома и синтезом большого числа АБК-индуцируемых полипептидов.Большие успехи были достигнуты в исследовании роли АБК при водном дефиците и иных стрессовых воздействиях: низкой и высокой температуре, солевом стрессе и т. д. Абсцизовую кислоту рассматривают как антистрессорный фактор, усиливающий адаптацию растений к различным неблагоприятным воздействиям. В условиях водного стресса наблюдается быстрое увеличение содержания АБК (Б. Мильборроу, Т.Н. Пустовойтова). Происходит перераспределение АБК: она транспортируется из клеток мезофилла в замыкающие клетки устьиц. При этом возрастает проницаемость мембран, что приводит к утечке ионов К+ из замыкающих клеток, осмотическая концентрация снижается и вода выходит, устьица закрываются. Реакция закрывания устьиц на АБК является одной из самых быстрых известных реакций на действие фитогормона, так как обычно она происходит в течение 5—10 мин. Одновременно с закрытием устьиц снижается интенсивность транспирации. Мутанты, лишенные способности образовывать АБК, быстро завядают, т. к. устьица остаются открытыми.
52. Этилен — это газ. Химическая формула СН2= СН2. Этилен отнесен к фитогормонам сравнительно недавно. Однако еще в 1911 г. русский ученый Д.Н. Нелюбов установил, что этилен тормозит рост стебля в длину, одновременно вызывая его утолщение и изгиб в горизонтальном направлении (тройная реакция стебля). В последующем было показано, что сочные плоды ряда растений (апельсины, бананы и др.) выделяют этилен, и что он стимулирует созревание плодов. В 1935— 1937 гг. Хичкок и Циммерман в США и Ю.В. Ракитин в СССР провели большое количество исследований, показавших, что этилен — регулятор созревания плодов. В 60-е годы показано, что спектр действия этилена значительно шире и что, подобно АБК, этот фитогормон оказывает в основном тормозящее влияние на процессы роста. Показано, что первоначальным предшественником образования этилена является аминокислота метионин. В образовании этилена участвует ряд ферментов, из которых особое значение имеет аминоциклопропанкарбосинтаза (АЦК-синтаза), катализирующая образование 1-аминоциклопропан-1-карбоновой кислоты (АЦК) — непосредственного предшественника этилена. Активность этого фермента возрастает в процессе созревания плодов, при поранении и, что самое главное, регулируется ауксином. Показано, что высокие концентрации ауксина вызывают синтез этилена. Предполагают, что происходит на уровне индукции генов АЦК-синтазы. Этилен образуется в созревающих плодах, стареющих листьях, в проростках до того, как они выходят на поверхность почвы. В растении этилен определяют с помощью биотестов или газовой хроматографии. Наиболее яркое проявление действия этилена — это регуляция процессов созревания плодов. Созревание плодов — сложный процесс, включающий увеличение интенсивности дыхания (так называемое климактерическое дыхание), распад сложных соединений на более простые, размягчение тканей (распад пектиновых веществ), изменение цвета и запаха. Плоды в период созревания образуют этилен, который и регулирует все эти процессы. Ингибиторы синтеза этилена задерживают созревание плодов. Этилен способствует увеличению толщины, но уменьшает рост в длину стебля, а также клеток, что связано с изменением ориентации микрофибрилл целлюлозы. Способствует образованию отделительного слоя и опадению листьев и плодов. Образование отделительного слоя связано с появлением ферментов, растворяющих клеточные стенки, нарушением связей между клетками. Этилен ускоряет процессы старения, тормозит рост почек, накапливается в покоящихся органах. Во многих случаях его накопление и действие связано с ауксином. Ауксин в повышенной концентрации вызывает образование этилена и, как следствие, торможение ростовых процессов. Возможно, торможение роста, вызванное высокими концентрациями ауксина, связано с накоплением этилена. Так, показано, что этилен и высокие концентрации ауксина вызывают эпинастию листьев, т. е. изменение угла наклона листа по отношению к стеблю в результате чего листья опускаются. У некоторых растений (ананасы) этилен индуцирует образование цветков. Этилен влияет на пол цветков, вызывая образование женских цветков у однодомных растений (огурец, тыква). При затоплении растений этилен индуцирует образование корней на стебле и формирование аэренхимы — ткани стебля, по которой кислород поступает в корни. Это позволяет растениям выживать в условиях кислородного голодания корней. Кроме того, этилен индуцирует образование на стебле адвентивных корней. Эти корни не выполняют поглощающую функцию, а участвуют в снабжении побегов веществами, необходимыми для нормального функционирования, например цитокининами. Этилен участвует в реакции растений на повреждающие воздействия, в частности на патогенные микроорганизмы (грибы, бактерии, вирусы). Под действием этилена в растении синтезируются белки-ферменты, такие как хитиназа и глюканаза, которые разрушают клеточную стенку патогенов. Есть данные, что этилен индуцирует и синтез ферментов, участвующих в образовании защитных соединений, например фитоалексинов.
53. Впервые в пыльце panca (Brassica napus) были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его химическое строение. Для получения 4 мг кристаллического вещества было переработано 4 кг пыльцы рапса, собранной пчелами. Оказалось, что это вещество стероидной природы с молекулярной формулой C28H4806. В дальнейшем оказалось, что активностью обладает и ряд сходных соединений. Общее название этой группы — брассиностероиды. В настоящее время известно 60 брассиностероидов. Эти соединения содержатся в различных органах растений, причем наиболее высоким содержанием отличается пыльца. Получено большое количество мутантов с нарушенным синтезом брассиностероидов. Это позволило проследить этапы их биосинтеза, выделить участвующие в нем ферменты и кодирующие их гены. Получены карликовые мутанты, рост которых нормализуется при экзогенном внесении эпибрассинолида. Вместе с тем известны карликовые мутанты, не чувствительные к брассинам. Это связано с нарушением в системе восприятия или передачи соответствующего сигнала. В последнее время показана способность брассиностероидов к индуцированию экспрессии ряда генов, в частности регулируемых светом. Высказывается мнение, что свет осуществляет свое действие путем влияния на синтез брассиностероидов или изменения чувствительности к ним. Было показано, что обработка брассиностероидами оказывает резкое стимулирующее влияние на увеличение длины и толщины второго междоузлия проростков фасоли, усиливая как деление, так и растяжение клеток. Опыты с мутантами подтверждают преимущественное влияние брассиностероидов на рост растяжением. Обработанные растения фасоли в дальнейшем отличались увеличенными размерами всех органов и повышенным сбором семян (Митчелл). Брассиностероиды вызывают дифференциацию ксилемы, замедляют старение и опадение листьев. Имеются данные, что с помощью обработки брассиностероидами можно повысить устойчивость растений к неблагоприятным условиям. Возможно действие брассиностероидов на повышение устойчивости растений связано с усилением синтеза жасмоновой кислоты. В последнее время в ряде работ указывается на значение жасмоновой кислоты как регулятора роста растений. Жасмоновая кислота образуется в растениях из мевалоновой кислоты. Синтез жасмоновой кислоты начинается в хлоропластах, продолжается в пероксисомах и заканчивается в цитоплазме. Имеются данные, что жасмоновая кислота регулирует развитие пыльцы, индуцирует созревание плодов, активирует гены, кодирующие ингибиторы протеаз. Особую роль жасмоновая кислота играет в защитных реакциях растений. Поранение и патогены индуцируют синтез жасмоновой кислоты. Жасмоновая кислота в свою очередь индуцирует синтез специфических белков фитоалексинов.
56.57. Теория стресса была сформулирована Гансом Селье, и термин «стресс» (от англ. stress — напряжение) в физиологию растений был заимствован в медицинской науке. В настоящее время в литературе употребляют различные наименования стрессов: климатический, водный, осмотический, температурный и даже экологический. Складывается представление, что существует множество различных стрессов. Правильнее называть внешние факторы, действующие на биологическую систему и вызывающие стресс, стрессорами, а стресс рассматривать как состояние организма, формирующееся в ответ на их воздействие. Например, «температурный стрессор», «осмотический стрессор» и т. д. Реакции на стрессорные воздействия лишь при некоторых условиях являются патологическими, в принципе же они имеют адаптивное значение, и поэтому были названы Селье «общим адаптационным синдромом». В более поздних работах он объединял термины «стресс» и «общий адаптационный синдром» и употреблял как синонимы (Селье) (1982). Обычно выделяют три фазы реакции растения на воздействие неблагоприятных факторов: первичная стрессовая реакции (по Селье: тревоги), адаптации (по Селье: резистентности) и истощения. В первую фазу наблюдаются значительные отклонения в физиолого-биохимических процессах, проявляются как симптомы повреждения, так и защитная реакция. Значение защитных реакций состоит в том, что они направлены на устранение (нейтрализацию) возникающих повреждений. Если воздействие слишком велико, организм погибает еще в стадии тревоги в течение первых часов. Если этого не случилось, реакция переходит во вторую фазу.
Во второй фазе организм либо адаптируется к новым условиям существования, либо повреждения усиливаются. При медленном развитии неблагоприятных условий организм легче приспосабливается к ним. После окончания фазы адаптации растения нормально вегетируют в неблагоприятных условиях уже в адаптированном состоянии при общем пониженном уровне процессов. В фазу повреждения (истощения, гибели) усиливаются гидролитические процессы, подавляются энергообразующие и синтетические реакции, нарушается гомеостаз. При сильной напряженности стресса, превышающей пороговое для организма значение, растение гибнет. При прекращении действия стресс-фактора и нормализации условий среды включаются процессы репарации, т. е. восстановления или ликвидации повреждений. Адаптационный процесс (адаптация в широком смысле) протекает постоянно и осуществляет «настройку» организма изменениям внешней среды в пределах естественных колебаний факторов. При значительных или внезапных отклонениях условий среды возникает необходимость срочной мобилизации приспособительных реакций. Можно полагать, что стресс-реакция играет существенную роль в адаптации организма. В целом реакция растения на изменившиеся условия является комплексной, включающей изменения биохимических и физиологических процессов. Эти изменения могут носить как неспецифический, так и специфический характер. Неспецифическими являются однотипные реакции организма на действие раз¬нородных стрессоров или разных организмов на один и тот же стресс-фактор. К специфическим относят ответные реакции, качественно отличающиеся в зависимости от фактора и генотипа. Понятие специфичности и неспецифичности адаптивных реакций применяют, во-первых, определяя отношение организма (вида, сорта) к различным стрессорам, а во-вторых, характеризуя реакцию различных организмов (видов, сортов) на один и тот же стрессор.
Таким образом, характер ответа растения на различные факторы включает в себя неспецифические реакции, возникающие при действии любых неблагоприятных условий и специфические реакции, зависящие от особенностей воздействия. Важнейшей неспецифической реакцией клеток на действие стрессоров является синтез особых белков. Ряд подобных белков, связанных со стрессом, был идентифицирован в 80—90-е годы. Установлены гены, кодирующие белки и показано, что стресс индуцирует экспрессию целого ряда генов. Это позволяет судить, какие гены ответственны за устойчивость. Стрессовые белки синтезируются в растениях в ответ на различные воздействия: анаэробиоз, повышенные и пониженные температуры, обезвоживание, высокие концентрации соли, действие тяжелых металлов, вредителей, а также при раневых эффектах и ультра¬фиолетовой радиации. В настоящее время обнаружено, что при каждом из этих стрессов синтезируются как общие, так и специальные для каждого из них белки. Стрессовые белки разнообразны и образуют группы высокомолекулярных и низкомолекулярных белков. Белки с одинаковой молекулярной массой представлены разными полипептидами. Это обусловлено тем, что каждую группу белков кодирует не один ген, а семейство близких генов. После завершения синтеза белка могут происходить различные модификации, например, обратимое фосфорилирование.(57) Защитная роль стрессовых белков в растении подтверждается фактами гибели клетки при введении ингибиторов синтеза белка в период действия стрессора. С другой стороны изменения в структуре гена, повреждающие синтез белков, приводят к потере устойчивости клеток. В результате изменения действия фактора или факторов происходит переключение жизни клетки на стрессовую программу. Это осуществляется одновременно на многих уровнях регуляции. Тормозится экспрессия генов, активность которых характерна для жизни клетки в нормальных условиях, и активируются гены стрессового ответа. Активирование генов стресса происходит благодаря рецепции сигнала и соответствующей сигнальной цепи. Абиотические стресс-факторы (избыток солей, повышенная температура и др.) по-видимому, активируют рецепторы в плазматической мембране. Там начинается сигнальная цепь, которая через различные интермедиаты, такие как протеинкиназы, фосфатазы приводит к образованию транскрипционного фактора. Эти факторы в ядре активируют гены путем связывания со специфическими промоторами. Последовательность реакций следующая: стресс- сигнал -> рецептор в плазмалемме -> сигнальная цепь в цитозоле —> транскрипционный фактор в ядре —> промотор стресс-индуцированного гена -> мРНК -> белок -> защитная роль в растении. В настоящее время исследованы промоторы различных стресс-индуцируемых генов, и при этом найден целый ряд регуляторных последовательностей для различных стрессоров. Например, обнаружен сегмент из 6 нуклеотидов, который активируется АБК, а также сегмент из 9 нуклеотидов, который активируется осмотическим стрессом. Предполагают, что есть последовательности, которые активируют несколько элементов. В результате изменений на транскрипционном уровне в клетках растений через 5 мин от начала стресса появляются мРНК, кодирующие стрессовые белки. Происходят изменения и в белоксинтезирующем аппарате. Распадаются полисомы, синтезирующие нормальные белки и формируются полисомы, синтезирующие стрессовые белки. Наблюдается ослабление, а затем и прекращение синтеза обычных белков в клетке, и переключение аппарата белкового синтеза на синтез стрессовых белков. Показано, что уже через 15 мин после начала воздействия стресс-фактора (теплового) в клетках обнаруживаются стрессовые белки. Их синтез постепенно нарастает, достигая максимума, а затем ослабевает. После окончания воздействия синтез стрессовых белков прекращается и возобновляется синтез белков, характерных для клетки в нормальных условиях. При этом при нормальной температуре мРНК стрессовых белков быстро разрушаются, тогда как сами белки могут сохраняться существенно дольше, обеспечивая, по-видимому, повышение устойчивости клеток к нагреву.
58. В 1991 г. академиком Тарчевским выдвинута концепция о сигнальных свойствах олигомерных промежуточных продуктов катаболизма, реализуемых путем воздействия на транскрипцию, трансляцию или на активность ранее образованных молекул ферментов. Эти так называемые стрессовые метаболиты, подобно гормонам животных, оказываются способны выполнять регуляторную функцию в последующей перестройке обмена клеток и организма в целом на новый режим в экстремальных условиях существования. Мы рассмотрим эту концепцию более подробно немного позднее. В первую фазу стресса происходят сдвиги в гормональном балансе. Возрастает интенсивность синтеза этилена и ингибиторов роста – абсцизовой и жасмоновой кислот. Количество гормонов, стимулирующих рост и развитие – ауксина, цитокинина, гиббереллинов, значительно уменьшается. Это ведет к торможению деления и роста клеток, а также роста всего растения. Таким образом, на первом этапе триады Селье у растений, в отличие от животных, происходит не активация, а торможение гормонального обмена
59.Важнейшей неспецифической реакцией на неблагоприятные воздействия является изменение свойств мембран, что связано с перестройками в их структуре. Это в значительной мере касается липидов. Наблюдаются сдвиги в соотношении различных групп жирных кислот, изменяется степень их ненасыщенности, возрастает уровень перекисного окисления липидов (ПОЛ), снижается их подвижность. Это влияет на функции мембранных белков. Структурные изменения в мембранах приводят к освобождению из связанного состояния ионов Са2+. Известна роль кальция в поддержании структуры хроматина, в регуляции активности ферментов в митохондриях и хлоропластах. В цитозоле концентрация кальция невысока (10-5—10-8 М), в то время как в апопласте и органеллах его в 103—104 раз выше. В результате стрессового воздействия поток кальция из апопласта в цитоплазму резко возрастает. Вслед за этим кальций выводится из цитоплазмы. Изменение концентрации кальция запускает специфические мембранные каналы и транспортные системы, а также вызывает структурные изменения в клетке. Нарушение структуры мембран приводит к многочисленным изменениям в метаболизме. Повышается проницаемость мембран, происходит деполяризация мембранного потенциала плазмалеммы, значение рН сдвигается в кислую сторону. Возрастает активность Н+ — помпы в плазмалемме и тонопласте. Увеличивается вязкость цитоплазмы, наблюдается торможение деления и роста клеток. Важной особенностью реакции растений на стресс-факторы является изменение напряженности энергетического обмена. Митохондрии являются основными органеллами, снабжающими клетки таким энергетическим эквивалентом как АТФ. В состоянии стресса цитохромный путь дыхания падает и возрастает альтернативный путь с его терминальной оксидазой АО, не сопровождаемой образованием АТФ. Возникает недостаток энергетических ресурсов. Между тем при стрессе необходимы дополнительные энергетические эквиваленты. Возрастают затраты АТФ на поддержание структуры и обменавеществ, что сопровождается временной активацией дыхания. В дальнейшем при усилении действия стрессора дыхание снижается, и соотношение синтеза и расхода АТФ еще больше нарушается. Возрастание активности гидролитических процессов ведет и к накоплению различных протекторных соединений, например такого низкомолекулярного осмотически активного вещества, как пролин. Пролин способен образовывать гидрофильные коллоиды, что удерживает воду и защищает белки от денатурации (при засухе, засолении, низкой или высокой температурах). Из других стрессовых метаболитов необходимо отметить образование редуцирующих Сахаров, полиаминов, бетаинов. Полиамины способны предотвращать повреждения, вызванные морозом, засухой, действием солей. Это вещества основной природы, легко связываются с отрицательно заряженными группами полимеров. Увеличивают стабильность РНК, ДНК, рибосом, стабилизируют мембраны, тормозят лизис клеточных стенок. Бетаины как метилированные производные аминокислот и аминов являются главными донорами метильных групп. Метилирование изменяет функциональную активность ДНК и других внутриклеточных полимеров и повышает их устойчивость к различным стрессовым воздействиям. Следует отметить, что перенос метильных групп на ДНК является самой распространенной модификацией ДНК. Существенную роль в ответе растений на стрессоры играет гормональная система. Показано, что при неблагоприятных условиях возрастает количество абсцизовой кислоты, этилена, жасмоновой кислоты, изменяется соотношение фитогормонов. Высказывается мнение, что у растений в отличие от животных при неблагоприятных условиях ведущую роль играют гормоны, тормозящие их функциональную активность. Это обеспечивает организму торможение роста и вхождение в покоящееся состояние. При действии неблагоприятных факторов важным для растения, является соранение нормальных донорно-акцепторных отношений, поскольку при снижении запроса на ассимиляты, уменьшается фотосинтез. Однако на уровне организма имеется возможность смягчать это явление. В ряде случаев это происходит в результате увеличения объемов запасающих тканей.
Устойчивость растений против неблагоприятных условий имеет разный характер. Она может быть основана на том, что организм тем или иным путем избегает их воздействия. Например, одни растения запасают воду (суккуленты) и тем самым избегают обезвоживания при засухе, другие растения, с очень коротким вегетационным периодом (эфемеры), приурочивают жизнедеятельность ко времени выпадения осадков. Значительно большее значение имеет устойчивость, основанная на выносливости клеток растений, т. е. способности в процессе адаптации перестраивать как скорость, так и направление метаболических реакций таким образом, чтобы и в изменившихся условиях среды вырабатывать все необходимые соединения. Разный уровень устойчивости обусловлен биологическими особенностями видов. Растения, различающиеся по устойчивости, на стрессовые воздействия реагируют однотипно, но отличаются по скорости физиологических и структурных перестроек. Для растений, устойчивых к действию стрессоров, показана большая стабильность клеточных мембран по сравнению с неустойчивыми. Сохранению целостности мембран способствует торможение распада липидов и белков, что может быть связано с эффективной работой механизмов антиоксидантной защиты. Важными является сохранение содержания ненасыщенных жирных кислот, регуляция кальциевого обмена в клетках. Это придает мембране большую пластичность и создает лучшие условия для функционирования мембран. Так, показано, что мембраны холодостойких растений отличаются большим содержанием ненасыщенных жирных кислот. Это позволяет сохранять жидкостное состояние при пониженных температурах, при которых они переходят в полужидкое состояние. Значение липидов мембран в устойчивости к низким температурам подтверждается опытами с трансгенными растениями. При изучении процессов устойчивости отмечаются случаи одновременного ее повышения к нескольким факторам после действия какого-либо одного стрессора (по П.А. Генкелю: «сопряженнаяустойчивость»). Так, установлено, что предварительный тепловой шок повышает устойчивость к водному дефициту, засолению, тяжелым металлам. С другой стороны, повышение теплоустойчивости растений отмечено при водном дефиците, действии засоления, холодовой закалке. Из неблагоприятных условий, которые вызывают стресс у растительных организмов, наиболее часто встречающимися стрессорами являются недостаток воды, высокая температура, низкая температура, высокая концентрация солей. В настоящей главе остановимся на рассмотрении физиологических основ засухоустойчивости, жаростойкости, холодоустойчивости, морозоустойчивости, зимостойкости, солеустойчивости, устойчивости к недостатку или отсутствию кислорода
60. Большая часть живых организмов на Земле не может обходиться без кислорода, который играет ключевую роль в энергетике, являясь окислителем питательных веществ. Молекулярный кислород не токсичен для клеток, однако опасность представляют продукты его неполного окисления: перекисные соединения, супероксидные радикалы, синглетный кислород и др. В связи с биологической активностью эти соединения получили название активные формы кислорода (АФК). Появление АФК вызвано тем, что молекулярный кислород (02) может пере¬хватывать электроны у некоторых переносчиков цепи электронного транспорта. В результате одноэлектронного восстановления молекулы кислорода образуется супероксидный радикал или анион-радикал:
02 + е -> 02-.
Образование АФК про¬исходит и при взаимодействии озона с кислородом:
03 + 02 -> 202 + 02-.
Супероксидный радикал — заряженная частица, окруженная молекулами во¬ды. Поэтому 02- не может преодолеть мембрану, оказывается «запертым» в клетке и становится источником других форм АФК, например перекиси водорода:
02- + е + 2Н+ —> Н202.
Перекись водорода, в свою очередь, восстанавливается и дает гидроксил-радикал:
Н202 + е + Н+ -> ОН-.
Реакционная способность по¬следнего чрезвычайно высока, поэтому гидроксил-радикал способен окислить практически любое вещество клетки, включая ДНК. Концентрации АФК в тка¬нях невысоки и составляют 10-8—10-11 М. АФК вызывают образование органи¬ческих гидропероксидов (ROOH) ДНК, белков, липидов. Этот процесс называют перекисным окислением. Гидропероксиды в ходе метаболизма способны пре¬вращаться в различные окисленные соединения — спирты, альдегиды и др. Так, в ходе перекисного окисления липидов (ПОЛ) снижается содержание нена¬сыщенных жирных кислот, образуются различные производные жирных кислот, а затем такие метаболиты как малоновый диальдегид, этан и др. АФК образуются в различных частях клетки. У животной клетки наиболь¬ший вклад вносит дыхательная цепь митохондрий. У растений эти процессы про¬исходят еще и в хлоропластах. Поэтому у растений возможность образования АФК выше, чем в животной клетке. Возникновение АФК в хлоропластах обусловлено работой Rubisco по оксигеназному типу, а также фотосистемами. В ФС I появ¬ление супероксидного радикала связано с ферредоксином, а в ФС II — с фотолизом воды. В растительных митохондриях образование супероксидного радикала обусловлено не только функционированием ЭТЦ, но и наличием цианидоустойчивого дыхания. Образование АФК в клетке происходит постоянно и является обычным ме¬таболическим процессом. АФК принимают участие в защитных реакциях, на¬пример, при действии патогенов, а также служат вторичными посредниками в передаче сигналов. Однако при неблагоприятных воздействиях (засуха, затоп¬ление, повышенная температура, тяжелые металлы, механические повреждения, гербициды и др.) происходит чрезмерное накопление АФК, что может приводить к серьезным функциональным нарушениям, поскольку повреждаются различ¬ные компоненты клеток. Примером является инициирование пероксидного окисления липидов (ПОЛ) биологических мембран, что способствует наруше¬нию их структуры и повышению проницаемости. АФК могут вызывать повреж¬дение фотосинтетического аппарата хлоропластов (фотоингибирование). АФК вызывают модификацию нуклеотидов и нуклеиновых кислот. Ингибируется де¬ление клетки. Особенно АФК влияют на электронтранспортную цепь хлоропла¬стов и митохондрий. Защита клетки обеспечивается благодаря работе антиоксидантной системы (АОС), которая может осуществляться энзиматическим и неэнзиматическим путем. Основным способом защиты от АФК является их инактивация. Это дости¬гается работой специальных ферментов: супероксиддисмутазы, катал азы и пероксидазы. Супероксиддисмутаза (СОД) — фермент, который широко рас¬пространен в природе. В активном центре СОД содержатся ионы металлов (меди, железа, марганца, цинка). Так, в митохондриях содержится Мп СОД, в хлоропластах — Fe СОД, в цитоплазме и пероксисомах — Cu-Zn СОД. СОД присутствует во всех аэробных организмах и служит для эффективного удаления супероксидных радикалов. СОД катализирует реакцию превращения двух анион-радикалов в перекись водорода (Н202) и молекулярный кислород:
202- + 2Н+ -> Н202 + 02.
Каталаза расщепляет перекись водорода с образованием воды и молекулярно¬го кислорода, а пероксидазы восстанавливают перекись до воды специальными субстратами, например, глютатионом. Глютатиону принадлежит особая роль, что связано со способностью восстанавливать перекись водорода, гидропероксиды ROOH, а также обезвреживать вторичные метаболиты. Глютатион-зависимые ферменты работают во всех частях клетки, включая ядро, митохондрии и эндоплазматическую сеть. Антиоксидантный эффект селена также в основном опо¬средован глютатион-зависимыми ферментами. В растительной клетке перекись водорода образуется еще и при окислении гликолата, который является продук¬том оксигеназной реакции, катализируемой РБФ-карбоксилазой/оксигеназой. В состав АОС входят низкомолекулярные вещества-антиоксиданты, способ¬ные реагировать с АФК без участия ферментов. К таким веществам относятся каротины, витамины (А, Е, С) и др. Так, аскорбиновая кислота (витамин С) способна реагировать с супероксидным и гидроксильным радикалами и тем самым снижать их концентрацию в клетке. Важность работы каротиноидов по обез¬вреживанию АФК доказывается опытами с мутантами. Мутанты микрооганизмов, лишенные каротиноидов, оказываются нежизнеспособными и погибают на свету в результате фотоокисления. Другим механизмом защиты от АФК является уменьшение внутриклеточной концентрации молекулярного кислорода, а соответственно и АФК в клетке. Это достигается путем усиления фотодыхания, активированием альтернативной оксидазы в ЭТЦ митохондрий, энергетического использования поглощенного ки¬слорода, например дыхательной цепью. Кроме того, в ответ на накопление АФК могут открываться поры на внутренней мембране митохондрий, что, по-види-мому, связано с утечкой протонов. В результате стимулируется дыхание и «ути¬лизируется» 02. При избыточном накоплении АФК клеткой и невозможности избавится от них, клетки уничтожаются апоптозом. Степень повреждений от АФК зависит от эффективности работы АОС и оп¬ределяется устойчивостью растений. У устойчивых растений выше активность антиоксидантных ферментов, содержание витаминов Е и С. Показано, что вве¬дение в ткани СОД подавляет образование избыточных АФК и снижает гибель клеток под действием патогенов. Трансгенные растения с повышенной актив¬ностью СОД оказывались более устойчивыми в ряду стресс-факторов, в т. ч. вод¬ному дефициту.
66. Устойчивость растений к низким температурам.
Устойчивость растений к низким температурам подразделяют на холодостойкость - устойчивость теплолюбивых растений к низким положительным температурам, и морозоустойчивость – способность растений переносить отрицательные температуры.
Холодостойкость. При помещении теплолюбивого растения в условия низкой положительной температуры отмечается:
- постепенная потеря тургора клетками надземной части;
- у ряда видов наблюдается усиление распада белков и накопление в тканях растворимых форм азота;
- нарушается функциональная активность мембран из-за перехода насыщенных жирных кислот, входящих в их состав, из жидко-кристаллического состояния в состояние геля.
Холодостойкость теплолюбивых растений можно усилить предпосевным закаливанием проклюнувшихся семян и рассады путем выдерживания их в чередующихся условиях положительных низких температур и более высоких. Холодостойкость повышается также при замачивании семян в 0,25% растворах микроэлементов или нитрата аммония.
Морозоустойчивость.
Быстрое понижение температуры в экспериментальных условиях сопровождается образованием льда внутри клеток и, как правило, их гибелью. Постепенное снижение температуры, что обычно в естественных условиях, приводит к образованию льда в межклетниках. При этом образующиеся кристаллы льда вытесняют из межклетников воздух, и замерзшая ткань выглядит прозрачной.
Основные причины гибели клеток при низких температурах:
- обезвоживание клеток из-за оттягивания воды кристаллами льда, образующимися в межклетниках;
- механическое сжатие льдом, повреждающее клеточные структуры;
- выход ионов и сахаров из клеток, из-за нарушения их активного транспорта (повреждаются переносчики).
Приспособления растений к перенесению низких температур.
Морозоустойчивые растения способны предотвращать или уменьшать действие отрицательных низких температур. Такие растения обладают приспособлениями, уменьшающими обезвоживание клетки:
- высокая проницаемость мембран в этих условиях. Это необходимо для транспорта воды из клетки и предотвращения образования внутриклеточного льда. Проницаемость мембран в условиях низких температур сохраняется дольше, если в их составе повышается содержание ненасыщенных жирных кислот;
- усиление синтеза криопретекторов – веществ, защищающих ткани от воздействия низких температур. К ним относятся полимеры, способные связывать значительные количества воды – гидрофильные белки, моно и олигосахариды. Вода, связываемая в виде гидратных оболочек этими молекулами, не замерзает и не транспортируется, оставаясь в клетке. Другой тип полимеров-криопротекторов – молекулы гемицеллюлоз, выделяемые в клеточную стенку. Они обволакивают кристаллы льда и тормозят их рост.
- накопление запасных веществ, которые могут использоваться при возобновлении роста.
Морозоустойчивость растений можно повысить с помощью закалки. Закаливание подготавливает весь комплекс защитных механизмов. Морозоустойчивость повышают также микроэлементы. Так, цинк повышает содержание связанной воды и усиливает накопление сахаров, молибден способствует увеличению содержания общего и белкового азота. Сходный эффект оказывают кобальт, медь, ванадий и др.
67. Адаптация теплолюбивых растений к низким положительным температурам. Защитное значение при действии низких положительных температур на теплолюбивые растения имеет ряд приспособлений. Прежде всего, это поддержание стабильности мембран и предотвращение утечки ионов. Устойчивые растения отличаются большей долей ненасыщенных жирных кислот в составе фосфолипидов мембран. Это позволяет поддерживать подвижность мембран и предохраняет от разрушений. В этой связи большую роль выполняют ферменты ацетилтрансферазы и десатуразы. Последние приводят к образованию двойных связей в насыщенных жирных кислотах.
Приспособительные реакции к низким положительным температурам проявляются в способности поддерживать метаболизм при ее снижении. Это достигается более широким температурным диапазоном работы ферментов, синтезом протекторных соединений. У устойчивых растений возрастает роль пентозофосфатного пути дыхания, эффективность работы антиоксидантной системы, синтезируются стрессовые белки. Показано, что при действии низких положительных температур индуцируется синтез низкомолекулярных белков.
Для повышения холодостойкости используется предпосевное замачивание семян. Для этого наклюнувшиеся семена теплолюбивых культур в течение нескольких суток выдерживают в условиях чередующихся температур: 12 ч при 1-5°С, 12ч при 15-22°С. Эффективным является и использование микроэлементов (Zn, Mn, Сu, В, Мо). Так, замачивание семян в растворах борной кислоты, сульфата цинка или сульфата меди повышает холодоустойчивость растений. Есть данные о положительном влиянии АБК, цитокининов, хлорхолинхлорида на холодоустойчивость.
68. Морозоустойчивость растений.
Морозоустойчивость — способность растений переносить температуру ниже 0 °С, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже — 20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения переносят условия зимы в различные периоды онтогенеза. У однолетних культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних — клубни, корнеплоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых культур перезимовывать обусловливается их достаточно высокой морозоустойчивостью. Ткани этих растений могут замерзать, однако растения не погибают. Большой вклад в изучение физиологических основ морозоустойчивости внесли Н. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие отечественные исследователи.
растений, способность растений выживать в период кратковременных заморозков или длительных морозов. Один из видов зимостойкости растений (См. Зимостойкость растений). У зимующих растений М. развивается каждый год в результате длительной и сложной подготовки их к зиме (см. Закаливание растений). В тёплый период года, когда растения растут, М. их незначительна, в период зимних морозов — она максимальна. Во время оттепелей М. резко падает, а затем, если усиление морозов протекает медленно, — снова повышается. Резкие колебания температуры опасны, т. к. растения не успевают пройти повторное закаливание. М. обусловлена тем, что в клетках протекают физико-химические процессы, во-первых, затрудняющие замерзание внутриклеточной воды, а во-вторых, повышающие устойчивость клеток к обезвоживанию протопластов и к механическим деформациям их внеклеточным льдом. Эти свойства клеток развиваются в процессе закаливания растений низкими температурами в несколько этапов, начиная с периода покоя. Если на каком-либо этапе в растительных клетках не пройдут необходимые процессы, то растения окажутся недостаточно морозостойкими и могут погибнуть.
69. Адаптация растений к низким температурам. Закаливание растений.
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость.
Под холодостойкостью понимают способность растений переносить положительные температуры несколько выше 0 оС. Для характеристики холодостойкости растений используют понятие «температурный минимум», при котором рост растений прекращается. О холодостойкости растений косвенно можно судить по показателю суммы биологических температур. Чем меньше эта величина, тем быстрее растения созревают и тем выше их устойчивость к холоду.
Показатели суммы биологических температур соответствуют скороспелости растений: очень раннеспелые имеют сумму биологических температур 1200 оС, раннеспелые - 1200-1600, среднераннеспелые – 1600 - 2200, среднеспелые – 2200 - 2800, среднепозднеспелые – 2800 - 3400, позднеспелые – 3400 - 4000 оС.
Холодостойкость теплолюбивых растений можно повысить двумя основными способами:
1) прививкой теплолюбивых растений на более холодоустойчивые подвои,
2) закаливанием.
Морозоустойчивость - способность растений переносить температуру ниже 0 °С.
Морозоустойчивость - не постоянное свойство растений. Она зависит от генетической природы организма, а также от физиологического состояния растения и условий внешней среды. Так, растения, выращенные при относительно низких положительных температурах, более устойчивы, чем выращенные при относительно высоких, в то же время один и тот же растительный организм в разных условиях способен погибнуть при температуре -5°С или перенести температуру до -40°С .
Другими словами, морозоустойчивость формируется в процессе всего развития (онтогенеза) растительного организма под влиянием определенных условий среды в соответствии с генотипом растения.
Морозоустойчивость некоторых растений (в частности, многих сортов роз) можно повысить комплексом мероприятий, и важное место среди них занимает закаливание.
Закаливание — это обратимое физиологическое приспособление растений к неблагоприятным воздействиям, происходящее под влиянием некоторых внешних условий.
Разные органы растений имеют неодинаковую способность к закаливанию, например, листья листопадных растений не обладают способностью к закаливанию; цветочные почки закаливаются хуже, чем листовые.
Процесс закаливания возможен лишь на определенных этапах развития растений. Для приобретения способности к закаливанию растения должны, прежде всего, закончить процессы роста. Сигналом к прекращению роста и стимулом для изменений в гормональной системе для растений является сокращение фотопериода и снижение температуры.
Под воздействием этих условий ослабляется синтез ростовых веществ – индолилуксусной кислоты и гиббереллинов – и усиливается образование абсцизовой кислоты и этилена. Это и приводит к торможению ростовых процессов.
Если в течение лета у многолетников процессы роста не успели закончиться, то это может вызвать массовую гибель растений зимой. Так, зимняя гибель часто вызывается летней засухой. Засуха приостанавливает рост летом, не позволяет многолетним культурам завершить ростовые процессы к осени. В результате растения оказываются неспособными пройти процессы закаливания и гибнут даже при небольших морозах. Аналогичная картина характерна для растений, выращенных при несоответствующем фотопериоде, не успевших завершить летний рост и поэтому неспособных к закаливанию. У вегетирующих растений легко вымерзают растущие и не закончившие рост органы.
Другим условием для приобретения способности к закаливанию является завершение оттока веществ. Всякое нарушение процессов оттока (кольцевание, например) препятствует закаливанию. Роль корней не сводится только к тому, что туда оттекают продукты обмена, гормоны, способствующие ростовым процессам. Важное значение имеет то, что клетки корня вырабатывают и накапливают вещества, повышающие устойчивость организма против мороза (криопротекторы).
Таким образом, процесс закаливания требует комплекса внешних условий и проходит в две фазы.
Первая фаза закаливания. Закаливание проходит на свету при пониженных плюсовых температурах (днем около +10, ночью около +2°С) и умеренной влажности. В этот период продолжается дальнейшее замедление и даже полная остановка ростовых процессов, а также с достаточной интенсивностью идет накопление криопротекторов, в частности образование сахаров.
Чем больше морозостойкость растения, тем большей способностью к накоплению сахаров в процессе фотосинтеза и к накоплению их именно при пониженной температуре оно обладает. Пониженная температура сокращает трату сахаров как в процессе дыхания, так и в процессах роста.
Влияние сахаров на повышение морозоустойчивости растений многосторонне. Накапливаясь в клетках, сахара повышают концентрацию клеточного сока, снижают водный потенциал. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление сахаров стабилизирует клеточные структуры, в частности хлоропласты, благодаря чему они продолжают функционировать. Процесс запасания солнечной энергии в клетках продолжается даже при отрицательных температурах.
Особенное значение имеет защитное влияние сахара на белки, сосредоточенные в поверхностных мембранах клетки. Защитное действие сахаров проявляется только в том случае, если происходит при понижении температуры. Имеются данные, что сахара повышают устойчивость именно специфических белков, образующихся при пониженной температуре.
В первую фазу закаливания происходит также уменьшение содержания свободной воды. Излишняя влажность почвы (дождливая осень) препятствует прохождению процесса закаливания. Чем меньше в клетках и тканях содержание воды, тем меньше образуется льда и тем меньше опасность повреждения.
Влияние света в первую фазу закаливания не ограничивается увеличением накопления сахаров, помимо этого свет оказывает регуляторное воздействие. Это подтверждается тем, что этиолированные (обесцвеченные) растения не способны к закаливанию даже при обогащении их сахарами.
Среди механизмов адаптации к действию пониженных температур — синтез ряда стрессовых белков. Эти гидрофильные белки синтезируются в цитоплазме под действием низких температур и выделяются в клеточную стенку. Они располагаются на поверхности кристаллов льда, препятствуют их росту, тормозят образование межклеточного льда. Кроме того, образование таких белков позволяет использовать энергию окисления на поддержание температуры органов растений на 4—7 °С выше температуры окружающего воздуха.
К концу первой фазы закаливания клетки растений переходят в покоящееся состояние. Происходит процесс обособления цитоплазмы, что, в свою очередь, снижает возможность ее повреждения образующимися в межклетниках кристаллами льда. Особенно интенсивно перестройка обмена веществ протекает в период второй фазы закаливания.
Вторая фаза закаливания протекает при дальнейшем понижении температуры и не требует света. В связи с этим она может протекать и под снегом.
В эту фазу происходит отток воды из клеток, а также перестройка структуры протопласта. Продолжается новообразование специфических, устойчивых к обезвоживанию белков. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдообразования.
Не для всех растений необходимо протекание процессов закаливания в две фазы. Например, у древесных растений, обладающих достаточным количеством сахаров, сразу протекают изменения, соответствующие второй.
Таким образом, в процессе закаливания возникает морозоустойчивость, которая определяется рядом изменений. У закаленных растений благодаря высокой концентрации клеточного сока, уменьшению содержания воды кристаллы льда образуются не в клетке, а в межклетниках. Количество образовавшегося льда в межклетниках у закаленных растении также значительно меньше. Изменение свойств белков цитоплазмы приводит к тому, что они становятся более устойчивыми к обезвоживанию. Накопление сахаров оказывает дополнительное защитное влияние. Цитоплазма закаленных растений более устойчива и к механическому давлению.
70. Солеустойчивость растений — это способность растений противостоять засолению, не снижая интенсивность течения основных физиологических процессов. Изучение солеустойчивости растений имеет большое практическое значение, поскольку океаны, воды которых содержат 3 — 4% солей, занимают около 75% поверхности Земли, более четверти всех почв засолены, а еще одна треть всех почв имеет тенденцию к засолению.
Влияние засоления на физиологические процессы. Главными причинами гибели растений при засолении являются нарушение ионного гомеостаза и токсичное действие солей, а также гиперосмотический стресс.
Высокие концентрации солей влияют на структуру органелл. По степени устойчивости к избытку солей, например хлорида натрия, органеллы можно расположить в такой последовательности: митохондрии – ядро – хлоропласты – рибосомы. В хлоропластах при засолении накапливается много ионов натрия и хлора, что приводит к разрушению гран. Избыток в цитоплазме этих ионов вызывает набухание не только хлоропластов, но и митохондрий. Процесс фотосинтетического транспорта электронов достаточно солеустойчив, однако восстановление углерода и фосфорилирование нарушаются при избыточном содержании ионов в клетках.
В условиях засоления в почвенных растворах преобладают одновалентные ионы, например хлор, натрий, вызывающие увеличение проницаемости мембран, в частности тонопласта. В результате кислоты клеточного сока проникают в хлоропласты, действуют на хлорофилл, превращая его в феофитин.
При слабом засолении у растений-гликофитов тормозится рост, резко снижается прирост сухой массы и обесцвечиваются листья. Обычно соли сильнее угнетают рост корней, чем надземных органов, возможно, потому, что корни в отличие от побегов постоянно находятся в контакте с засоленной почвой. Соли повреждают клетки зоны растяжения и зоны корневых волосков – главных зон поглощения солей и поступления воды. Повреждение этих зон увеличивает водный дефицит в тканях, несмотря на снижение интенсивности транспирации. Повреждение клеток в зоне корневых волосков является причиной плохого поглощения элементов минерального питания, прежде всего азота, фосфора и калия. В результате растения голодают. Засоление приводит к нарушению соотношения между поглощением натрия, калия и магния: интенсивное поглощение натрия уменьшает поглощение калия и магния.
В клетках корней снижается проницаемость мембран для воды – это одно из приспособлений растения к водному режиму засоленной почвы.
Избыток солей в почве может вызвать асинхронные деления меристематических клеток, но всего сильнее оно подавляет растяжение клеток. В результате возникает ксероморфная структура.
Кратковременное засоление повышает интенсивность дыхания, длительное – приводит к снижению его интенсивности. При засолении нарушается сопряженность дыхания и синтеза АТФ.
