- •Физиология растений как комплексная наука цели задачи объекты исследования
- •Функции растений как основа гомеостаза организма
- •Основные функции органов растения
- •Роль зеленого растения в биосфере
- •Пространственно- временная организация растительной клетки
- •6. Трансмембранный перенос веществ. Типы транспорта. Симпорт, антипорт, унипорт. Схема транспорта и котранспорта молекул.
- •7. Транспорт воды. Белки аквапорины («водные каналы»). Группы растительных аквапоринов.
- •8. Фотосинтез: определение, уравнение, процессы, значение.
- •9. История изучения фотосинтеза: эксперименты, ученые, значение.
- •10. Современный этап в исследовании фотосинтеза.
- •11. Лист как орган фотосинтеза, особенности строения листа.
- •12. Хлоропласты: строение, организация, образование (основные этапы, сущность). Значение сложной организации внутренних мембран хлоропластов.
- •13. Пигментные системы фотосинтеза.
- •14. Хлорофилл: строение, виды, значение.
- •15. Химические свойства хлорофилла.
- •16. Культура растений в условиях искусственного освещения
- •17. Масштабы фотосинтетической деятельности растений в биосфере
- •18.Метаболизм азота в растениях. Взаимодействие азотного и углеродного потоков; роль первичных реакций фотосинтеза в усвоении азота.
- •19. Метаболические взаимодействия клеточных органоидов. (не нашла)
- •20. Механизм поглощение ионов растениями
- •21. Фотофизический этап световой фазы фотосинтеза.
- •22. Понятие о фотосистемах: фотосистема I(фс-1) и фотосистема II(фс-2).
- •23. B6f или b6f-комплекс.
- •24. Нециклический, циклический и псевдоциклический транспорт электронов в хлоропластах.
- •Световая фаза
- •Темновая фаза
- •Цикл Кальвина можно разделить на фазы:
- •Цикл Кальвина можно разделить на фазы.
- •Вопрос 31: Температура как фактор фотосинтеза
- •Вопрос 32: Свет как фактор фотосинтеза
- •Вопрос 33: Определение процесса клеточного дыхания. Общая схема процесса дыхания.
- •Вопрос 34:Гликолиз: эпаты, реакции, ферменты.
- •Вопрос 35: Цикл Кребса (трикарбоновых кислот, лимонной кислоты).
- •71. Устойчивость растений к гипо- и аноксии.
- •72. Газоустойчивость растений.
- •73. Радиоустойчивость растений.
- •74. Устойчивость растений к патогенам.
- •75. Сигнальные системы защитных реакций растений к патогенам
22. Понятие о фотосистемах: фотосистема I(фс-1) и фотосистема II(фс-2).
Фотосистема — совокупность ССК, фотохимического реакционного центра и переносчиков электрона. В хлоропластах зеленых растений имеются две фотоактивные пигментные системы: фотосистема I(ФС-1) и фотосистема II (ФС-2). Открыты они были в связи си изучением эффекта существенного усиления фотосинтетической активности хлоропластов при добавлении к дальнему красному свету более коротковолнового. Пониженная интенсивность фотосинтеза на одном лишь длинноволновом свете объясняется тем, что в возбужденное состояние приходят молекулы хлорофилла ФС-1, добавление же более коротковолнового света возбуждает обе системы, что и приводит к резкому усилению фотосинтеза.
Фотосистема II(ФС-2)
ФС-2 содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр ФС-2 представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофиллаaс максимумом поглощения при 680 нм (П680). На него,в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680становится сильным восстановителем (E0=-0,7 В).
П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС-2 и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы. Заполнение электронной вакансии в молекуле П680происходит за счёт воды. В состав ФС-2 входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутри тилакоидного пространства и полученные 4 протона выбрасываются в него.
Таким образом, суммарный результат работы ФС-2 —это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутри тилакоидном пространстве и 2 восстановленных пластохинонов в мембране
Фотосистема I(ФС-1)
В эволюционном отношении ФС-1 более древняя фотосистема. У фотосинтезирующих бактерий эта система не способна использовать воду в качестве донора электронов и является единственной.ФС-1содержит примерно 200 молекул хлорофилла.В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор —хлорофилл a, тот —вторичный (витамин K1или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы. Белок пластоцианин, восстановленный в b6f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700
