- •Раздел № 1 философия науки
- •Структура познавательного процесса.
- •2. Субъект и объект в научном познании.
- •3. Наука как система знаний. Знание как философская категория. Типология научных знаний.
- •4. Методология научного познания. Классификация научных методов.
- •5. Абстрагирование и идеализация как способы конструирования теоретических знаний.
- •6. Приемы логического доказательства. Определение и умозаключение: характеристика, основные разновидности.
- •7. Критерии научного знания. Нормы и идеалы научности.
- •8. Понятия научного факта. Структура и типология научных фактов.
- •9. Понятия научного закона, его основные типы.
- •10. Гипотеза как форма проверки научного знания. Типы и виды гипотез, методы их обоснования и проверки.
- •11. Научная теория как форма знания. Ее структура и виды. Основные функции теории.
- •12. Понятия научной парадигмы. История науки как постоянная смена парадигм.
- •13. Роль языка и общения в науке.
- •14. Верификация и фальсификация как методологические процедуры.
- •15. Проблема истины в научном познании. Классическая и неклассическая концепция истины.
- •16. Теоретическое и эмпирическое знание. Их характеристики. Диалектика взаимоотношения теоретического и эмпирического знания.
- •17. Системный подход в науке. Зарождение и развитие синергетики. Возможности применения и опыт использования системного подхода и синергетики в естественных и гуманитарных науках.
- •18. Наука как социокультурный феномен. Формы и механизмы взаимодействия науки и культуры.
- •19. Личность ученого: типы, становление и развитие. Проблема индивидуальности ученого. Этос науки. Ученые и научное сообщество.
- •20. Научная картина мира, ее структура и функции в научном исследовании.
17. Системный подход в науке. Зарождение и развитие синергетики. Возможности применения и опыт использования системного подхода и синергетики в естественных и гуманитарных науках.
Системный подход — совокупность общенаучных методологических принципов (требований), в основе которых лежит рассмотрение объектов как систем. К числу этих требований относятся: а) выявление зависимости каждого элемента от его места и функций в системе с учетом того, что свойства целого несводимы к сумме свойств его элементов; б) анализ того, насколько поведение системы обусловлено как особенностями ее отдельных элементов, так и свойствами ее структуры; в) исследование механизма взаимодействия системы и среды;
г) изучение характера иерархичности, присущей данной системе;
д) обеспечение всестороннего многоаспектного описания системы; е) рассмотрение системы как динамичной, развивающейся целостности.
Специфика системного подхода определяется тем, что он ориентирует исследование на раскрытие целостности развивающегося объекта и обеспечивающих ее механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину.
Важным понятием системного подхода является понятие «самоорганизация». Данное понятие характеризует процесс создания, воспроизведения или совершенствования организации сложной, открытой, динамичной, саморазвивающейся системы, связи между элементами которой имеют не жесткий, а вероятностный характер (живая клетка, организм, биологическая популяция, человеческий коллектив и т.п.).
В современной науке самоорганизующиеся системы являются специальным предметом исследования синергетики — общенаучной теории самоорганизации, ориентированной на поиск законов любой природы — природных, социальных, когнитивных (познавательных).
Структурно-функциональный (структурный) метод строится на основе выделения в целостных системах их структуры — совокупности устойчивых отношений и взаимосвязей между ее элементами и их роли (функций) относительно друг друга.
Структура понимается как нечто инвариантное (неизменное) при определенных преобразованиях, а функция как «назначение» каждого из элементов данной системы (функции какого-либо биологического органа, функции государства, функции теории и т.д.).
Основные требования процедуры структурно-функционального метода (который часто рассматривается как разновидность системного подхода):
а) изучение строения, структуры системного объекта;
б) исследование его элементов и их функциональных характеристик;
в) анализ изменения этих элементов и их функций;
г) рассмотрение развития (истории) системного объекта в целом;
д) представление объекта как гармонически функционирующей системы, все элементы которой «работают» на поддержание этой гармонии.
Системный подход был разработан в середине 50 х - годов, связан с развитием кибернетики. Блауберг и Лоден 1973 годы. В основе системного подхода, как методологии научного познания, лежит исследование объектов как систем. Системный подход способствует адекватному и эффективному раскрытию сущности проблем и успешному их решению в различных областях науки и техники.
Становление и сущность системного подхода. Сущность его в том, что он предполагает изучение некоего целого, именно как целое, не сводимое к его частям., то есть в методологии системного подхода суть целого выражается в двух положениях:
1) Целое больше чем сумма входящих в него частей.
2) Главное, что характеризует целое, отсутствует у его частей взятое в отдельности.
Под системой в системном подходе подразумевается закономерность и совокупность элементов, взаимосвязанных друг с другом, таким образом, что они объединяют некое интеллектуальное целое, не сводимое к его частям.
Центральное место в системном подходе занимает установка на выявление интегративных системообразующие факторов, благодаря которым элементы объеденяються в целое или обретает новый характер или систему.
Системный подход направлен на выявление многообразных типов связи сложного объекта и сведения их в единую теоретическую картину. В различных областях науки центральное место начинают занимать проблемы организации и функционирования сложных объектов, изучение которых без учета всех аспектов их функционирования и взаимодействия с остальными объектами и системами просто немыслимо. Более того, многие из таких объектов, представляют сложное объединение различных подсистем, каждая из которых в свою очередь также является сложным объектом.
Системный подход не связан (не существует) в виде строгих методологических концепций. Он выполняет свои эвристические функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответственном ориентировании конкретных исследований.
Преимуществом системного подхода, прежде всего, является то, что он расширяет область познания по сравнению с той, что существовала раньше. Системный подход, основываясь на поиске механизмов целостности объекта и выявления технологий его связей, позволяет по новому объяснить сущность многих вещей. Широта принципов и основных понятий системного подхода ставит их в тесную связь с другими методологическими направлениями современной науки. Принцип системности лежит в основе методологии, выражающий философские аспекты системного подхода и служащий основой изучения сущности и всеобщих черт системного знания, его гносеологических оснований и категориально – понятийного аппарата, истории системных идей и в процессе исследования. При этом исследование системной модели может быть реализовано на основе как системологических концепций, так и частных методов конкретных наук.
Зарождение и развитие синергетики. Синергетика – молодое научное направление, представляющее междисциплинарную универсальную теорию и методологию самоорганизации процессов самой различной природы.
Широкое распространение идей и методов синергетики — теории самоорганизации и развития систем любой природы. В этой связи становится все более укрепляющееся представление о мире не только как о саморазвивающейся целостности, но и о как нестабильного, неустойчивого, неравновесного, хаосогенного, неопределенностного. Эти фундаментальные характеристики мироздания сегодня выступают на первый план, что, конечно, не исключает «присутствия» в Универсуме противоположных характеристик.
В современной, постнеклассической картине мира проблема иррегулярного поведения неравновесных систем находится в центре вни мания синергетики — теории самоорганизации. Синергетика получила широкое распространение в современной философии науки и методологии. Сам термин древнегреческого происхождения, означает содействие, соучастие, или содействующий, помогающий. Следы его употребления можно найти еще в исихазме — мистическом течении Византии. Наиболее часто он употребляется в значении: согласованное действие, непрерывное сотрудничество, совместное использование.
В 1973 г. немецкий ученый Г. Хакен выступил на первой конференции, посвященной проблемам самоорганизации, что положило начало новой дисциплине — синергетике. Г. Хакен обратил внимание на то, что во многих дисциплинах, от астрофизики до социологии, мы часто наблюдаем, как кооперация отдельных частей системы приводит к макроскопическим структурам или функциям. Синергетика в ее нынешнем состоянии фокусирует внимание на таких ситуациях, в которых структуры или функции систем переживают драматические изменения на уровне макромасштабов. В частности, синергетику особо интересует вопрос о том, как именно подсистемы или части производят изменения, всецело обусловленные процессами самоорганизации. Парадоксальным казалось то, что при переходе от неупорядоченного состояния к состоянию порядка все эти системы ведут себя схожим образом.
Хакен объясняет, почему он назвал новую дисциплину синергетикой следующим образом. Во-первых, в ней «исследуется совместное действие многих подсистем, в результате которого на макроскопичес4 ком уровне возникает структура и соответствующее функционирование». Во-вторых, она кооперирует усилия различных научных дисциплин для нахождения общих принципов самоорганизации систем.
По мнению ученого, существуют одни и те же принципы самоорганизации различных по своей природе систем от электронов до людей, а значит, речь должна вестись об общих детерминантах природных и социальных процессов, на нахождение которых и направлена синергетика.
Синергетика оказалась весьма продуктивной научной концепцией, предметом которой выступили процессы самоорганизации — спонтанного структурогенеза. Она включила в себя новые приоритеты современной картины мира: концепцию нестабильного неравновесного мира, феномен неопределенности и многоальтернативности развития, идею возникновения порядка из хаоса.
Основополагающая идея синергетики состоит в том, что неравновесность мыслится источником появления новой организации, т. е. порядка. Поэтому главный труд крупных представителей этой науки И. Пригожина и И. Стенгерс назван «Порядок из хаоса». Неравновесные состояния связаны с потоками энергии между системой и внешней средой. Процессы локальной упорядоченности совершаются за счет притока энергии извне. Переработка энергии, подводимой к системе на микроскопическом уровне, проходит много этапов, что, в конце концов, приводит к упорядоченности на макроскопическом уровне: образованию макроскопических структур (морфогенез), движению с небольшим числом степеней свободы и т. д. При изменяющихся параметрах одна и та же система может демонстрировать различные способы самоорганизации.
Саморазвивающиеся системы находят внутренние (имманентные) формы адаптации к окружающей среде. Неравновесные условия вызывают эффекты корпоративного поведения элементов, которые в равновесных условиях вели себя независимо и автономно. Вдали от равновесия когерентность, т. е. согласованность элементов системы, в значительной мере возрастает. Определенное количество или ансамбль молекул демонстрирует когерентное поведение, которое оценивается как сложное.
Новые стратегии научного поиска в связи с необходимостью освоения самоорганизующихся синергетических систем опираются на конструктивное приращение знаний в так называемой «теории направленного беспорядка», которая связана с изучением специфики и типов взаимосвязи процессов структурирования и хаотизации. Попытки осмысления понятий порядка и хаоса в качестве предпосылочной основы имеют обширные классификации и типологии хаоса.
В постнеклассическую картину мира хаос вошел не как источник деструкции, а как состояние, производное от первичной неустойчивости взаимодействий, которое может явиться причиной спонтанного структурогенеза. В свете последних теоретических разработок хаос предстает не просто как бесформенная масса, но как сверхсложноорганизованная последовательность, логика которой представляет значительный интерес. Ученые определяют хаос как нерегулярное движение с непериодически повторяющимися, неустойчивыми траекториями, где для корреляции пространственных и временных параметров характерно случайное распределение.
В мире человеческих отношений всегда существовало негативное отношение к хаотическим структурам, социальная практика против хаосомности, неопределенности. Большинство тоталитарных режимов желают установить «полный порядок» и поддерживать его с «железной необходимостью».
В современной синергетической парадигме предлагается иное, конструктивное понимание роли и значимости процессов хаотизации. Истолкование спонтанности развития в деструктивных терминах «произвола» и «хаоса» вступает в конфликт не только с выкладками современного естественнонаучного и философско-методологического анализа, признающего хаос наряду с упорядоченностью универсальными характеристиками развития универсума.
Открытие динамического хаоса — это, по сути, дела открытие новых видов движения, столь же фундаментальное по своему характеру, как и открытие физикой элементарных частиц, кварков в качестве новых элементов материи. Наука о хаосе — это наука о процессах, а не о состояниях, о становлении, а не о бытии.
Для освоения самоорганизующихся синергетических систем взята новая стратегия научного поиска, основанная на древовидной ветвящейся графике, образ которой воссоздает альтернативность развития. Выбор будущей траектории развития в одном из нескольких направлений зависит от исходных условий, входящих в них элементов, локальных изменений, случайных факторов и энергетических воздействий. И. Пригожий предложил идею квантового измерения применительно к универсуму как таковому.
Новая стратегия научного поиска предполагает учет принципиальной неоднозначности поведения систем и составляющих их элементов, возможность перескока с одной траектории на другую и утрату системной памяти, когда она забывает свои прошлые состояния, действует спонтанно и непредсказуемо. В критических точках направленных изменений возможен эффект ответвлений, допускающий в перспективе функционирования таких систем многочисленные комбинации их эволюционирования.
