Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника_ответы на билеты.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
174.38 Кб
Скачать
  1. Параметрические стабилизаторы напряжения.

Стабилиза́тор напряже́ния — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Параметрический: в таком стабилизаторе используется участок ВАХ (Вольт-ампе́рная характери́стика) прибора, имеющий большую крутизну.

  1. Компенсационные стабилизаторы напряжения.

Компенсационный стабилизатор напряжения, по сути, является устройством, в котором автоматически происходит регулирование выходной величины, то есть он поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими компенсационные стабилизаторы отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации.

Компенсационные стабилизаторы бывают двух типов: параллельными и последовательными. Структурные схемы компенсационных стабилизаторов показаны ниже.

Компенсационный стабилизатор напряжения последовательного типа

Компенсационный стабилизатор напряжения параллельного типа

Основными элементами всех компенсационных стабилизаторов напряжения являются регулирующий элемент Р; источник опорного (эталонного) напряжения И; элемент сравнения ЭС; усилитель постоянного тока У.

  1. Полевые транзисторы, их основные типы и характеристики.

Полевой транзистор — полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком.

Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками), такие приборы ещё называют униполярными, тем самым противопоставляя их биполярным[1].

Виды:

полевой транзистор с управляющим переходом. В качестве основного рабочего элемента этого полевого транзистора выступает определенной длины полупроводник с электропроводностью либо p-, либо n-типа. К противоположным концам такого полупроводника подводится внешнее напряжение, что приводит к появлению в нем потоков зарядов и, соответственно, к протеканию через полупроводник некоторого тока. Чтобы сделать возможным управление потоком зарядов в полупроводниковую структуру, так же как и в случае с биполярным транзистором, вводится небольшая область с противоположным основному типом электропроводности.

Следующий из рассматриваемых здесь видов полевых транзисторов — транзисторы с изолированным затвором. Как видно из названия, в таких транзисторах область затвора не имеет непосредственного электрического контакта с основной полупроводниковой структурой, в которой расположен канал протекания потока зарядов. Сам затвор выполняется из металла и его воздействие на канал обусловлено только возможностью создания в полупроводнике некоторых электрических полей, образуемых вблизи затвора при приложении к нему внешних напряжений. Учитывая специфику конструкции затвора, такие транзисторы часто называют МДП- (металл—диэлектрик—полупроводник) или МОП- (металл—окисел—полупроводник) транзисторами. Но не только вид затвора отличает МДП-транзисторы от полевых транзисторов с управляющими переходами. Дело в том, что в МДП-транзисторах нет четкой монолитной полупроводниковой структуры с одним типом проводимости, которая играла бы роль канала для протекания потока зарядов так же, как это происходит в полевых транзисторах с управляющим переходом. Здесь канал как бы спрятан внутри области полупроводника (подложки) с типом проводимости, противоположным тому, который необходим для протекания потока соответствующих данному транзистору зарядов (для n-канального транзистора это электроны, для p-канального — дырки).

  • МДП-транзисторы с индуцированным каналом (рис. 2-1.2) — канал образуется в результате внешних электрических воздействий;

  • МДП-транзисторы со встроенным каналом (рис. 2-1.3) — канал выполнен путем физического внедрения между стоком и истоком области с соответствующей электропроводностью.