Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
277.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
160.42 Кб
Скачать

277. Типы таксиса у микроорганизмов: фототаксис, хемотаксис, аэротаксис. Привести примеры.

Фототаксис (от др.-греч. φως / φωτος — свет и τάξις — строй, порядок, расположение по порядку)  — двигательная реакция подвижных микроорганизмов в ответ на световой стимул, свойственный прежде всего фототрофным организмам.

Механизм фототаксиса включает три основные стадии:

  • поглощение света и первичная реакция в фоторецепторе;

  • преобразование стимула и передача сигнала двигательному аппарату;

  • изменение движения жгутиков.

Примеры

Положительный фототаксис — движение в сторону источника света.

  • Эвглена зелёная плывет к свету.

  • Хлоропласты перемещаются в сторону света.

  • Многие ночные бабочки и ряд жуков летят по ночам на свет.

Отрицательный фототаксис — движение в сторону от света.

Дождевые черви, личинки падальных мух, мокрицы, тараканы избегают света

Аэротаксис — это движение микроорганизмоводноклеточных, подвижных клеток многоклеточных организмов к источнику раздражения или от него. Источником раздражения в данном случае является кислород. Аэротаксис по сути является частным случаем хемотаксиса.

Смысл аэротаксиса

Движение в сторону концентрации кислорода проявляется у аэробов, в обратную сторону — у анаэробов. Некоторые организмы в зависимости от концентрации кислорода может проявлять как положительный, так и отрицательный таксис.

Примеры аэротаксиса

Определить аэротаксис у бактерий можно следующим образом. Под микроскопом наблюдается пробирка, в которой под стеклом находится капля воды. Аэробы скопятся у края стёклышка, анаэробы — в середине капли, бактерии, для которых наиболее благоприятна определённая кислорода среда (например, некоторыеспириллы), скопляются на наиболее благоприятном для них расстоянии от края.

Хемота́ксис — двигательная реакция микроорганизмов на химический раздражитель.

Бактерии способны двигаться по направлению к аттрактантам (зачастую питательным веществам) и от репеллентов (например,токсинов). В качестве аттрактантов выступают практически все сахара и аминокислоты, в качестве репеллентов — жирные кислотыспирты и другие потенциально вредоносные вещества. Чувствительность бактерии впечатляет — они легко детектируют изменение концентрации на 0,1 % при микромолярных концентрациях веществ, а диапазон детектируемых концентраций перекрывает пять порядков.

Аттрактанты и репелленты детектируются за счет непосредственного взаимодействия со специфическими хеморецепторами, а не за счет каких-либо внутриклеточных эффектов детектируемого вещества.

Мембранные рецепторы группируются в кластеры, как правило расположенные на полюсах клетки, однако это не может помочь бактерии уловить разницу концентраций между полюсами, поскольку она будет слишком маленькой из-за малого размера самой клетки.

Вместо этого бактерии ориентируются в химических градиентах путем измерения временных изменений концентраций при движении. Обычно скорость движенияEscherichia coli составляет 10—20 своих длин в секунду.

Сравнивая текущую загруженность хеморецепторов специфическими лигандами с таковой несколько секунд назад, клетка фактически может «измерить» разницу концентраций определенного вещества на расстоянии, во много раз превышающем длину самой клетки.

Такое измерение концентрации лиганда во времени возможно за счет адаптивного метилирования хеморецепторов, которое зависит от загруженности их лигандами.

Задержка во времени, между связыванием лиганда и метилированием рецептора, представляет собой своеобразную молекулярную «память», которая и позволяет измерять изменение концентраций лиганда.

Если выбранное направление движения соответствует увеличению концентрации аттрактанта (снижению концентрации репеллента), то время до следующего кувыркания увеличивается. К сожалению, из-за своего малого размера, клетка постоянно сбивается с «верного» пути броуновским движением и, поэтому, просто не может продолжительно двигаться прямо. Такой механизм только в общем обеспечивает движение бактерии по градиенту концентрации в нужном направлении, но для бактерии является достаточно эффективным.

Механизм, основанный на переключении направления вращения жгутиков, приводящий к прямолинейному движению, которое через варьирующиеся промежутки времени сменяется кувырканием на месте, не является единственным.

У Rhodobacter sphaeroides вращение единственного жгутика сменяется его полной остановкой, а у Rhizohium meliloli вращение жгутика никогда не прекращается — изменяется только его скорость. Но, во всех этих случаях, результат работы сенсорной системы хемотаксиса один и тот же: если бактерия движется в «нужном» направлении — продолжительность такого движения увеличивается.

Сенсорный механизм хемотаксиса более сложен, чем рассмотренные ранее. Это объясняется, прежде всего, двумя причинами.

Во-первых, поскольку броуновское движение может очень быстро изменить ориентацию бактериальной клетки, бактерии должны обрабатывать хемотаксические сигналы очень быстро и, действительно, от стимула до переключения «моторов», у бактериальной клетки, проходит не более 0,2 секунды.

Во-вторых, для правильного сравнения пространственных градиентов, клеткам необходимо такое устройство сенсорного механизма, которое «гасило» бы сенсорную стимуляцию в статических условиях, то есть в отсутствие градиента концентрации, как бы много какого-то аттрактанта или репеллента ни присутствовало бы в среде.

Таксисы - направленные движения одноклеточных организмов, а также отдельных клеток, входящих в состав многоклеточных организмов, и внутриклеточных частей под влиянием различных факторов (раздражителей) называют таксисами (от греческого слова - порядок, расположение).

Эти движения могут быть как по направлению к раздражителю - положительный таксис, так и от него - отрицательный. Те раздражители, которые привлекают к себе, называются аттрактантами (от латинского слова - притягиваю), а раздражители, от которых отдаляются, - репеллентами (от латинского слова - отталкиваю, отгоняю). Различают и движения, не ориентированные по отношению к источнику раздражения.

Если раздражителем является свет, то движение носит название фототаксис, если химическое вещество - хемотаксис, температура - термотаксис, повреждение - травмотаксис, электрический ток - гальванотаксис, сила земного притяжения - геотаксис и т. д.

Один и тот же раздражитель для одних видов может быть аттрактантом, а для других - репеллентом. Так, одноклеточная эвглена всегда двигается к источнику света, а инфузория трубач - от него.

Таксис может зависеть от интенсивности раздражителя. Например, фототаксис при слабой интенсивности света может быть положительным, при значительной - отрицательным, а при средней - и вовсе не проявляться. Отрицательный гальванотаксис (когда движение идет в сторону катода) у инфузории туфельки при возрастании силы тока сменяется на положительный. И совсем сложно определить, какой термотаксис у этой инфузории. Если туфелек поместить в горизонтальную трубку, вдоль которой имеется перепад температуры от +40°С на одном ее конце до +15°С на другом, то через некоторое время все инфузории скопятся в том месте трубки, где температура +26°, +27°С. Здесь для них, видимо, самые благоприятные условия: ни жарко, ни холодно.

Благодаря таксисам одноклеточные организмы отыскивают пищу, находят места с более благоприятными условиями обитания, а также находят особей своего вида и избегают вредоносных воздействий.

Из внутриклеточных таксисов лучше всего изучен фототаксис хлоропластов в клетках листа растения. В них содержится пигмент филл, благодаря которому на свету идет синтез. Обычно в листьях, находящихся в ноте, хлоропласты расположены более или нее равномерно вдоль всех стенок клетки. На умеренном свету они перемещаются к перпендикулярным к падающему свету, достигается максимальная освещенность ропластов.

Пример таксиса отдельных клеток многоклеточного организма - хемотаксис лейкоцитов (белых кровяных клеток). Под влиянием трактантов, образующихся при воспалениях, они передвигаются к месту воспалительного процесса, где участвуют в захватывании и переваривании болезнетворных микробов и остатков погибших здесь клеток. Благодаря киносъемке удалось определить: если в кадре находится неподвижный лейкоцит и в это время вносится какой-нибудь аттрактант, то у лейкоцита сразу начинают появляться выросты - ложноножки, с помощью которых он передвигается. Причем возникают они на стороне, обращенной к аттрактанту. Значит, лейкоцит обнаруживает разницу в концентрации аттрактанта по обе стороны своего тела, т. е. на расстоянии около 8 мкн. Доказано, что у лейкоцитов имеются особые чувствительные центры, которые реагируют на продукты выделения микробов.

Иной механизм хемотаксиса у бактерий, который помогает им находить пищу и спасаться от вредоносных химических компонентов среды обитания. Они как бы сравнивают концентрацию вещества в данный момент с той, которая была несколько раньше. Это временной принцип. Различными опытами с использованием биохимических и генетических методов установлено, что и у бактериальной клетки имеются чувствительные для хемотаксических веществ центры. Поскольку бактерии различают изменение концентрации вещества во времени, значит, они "запоминают" ее. Возможно, что изучение хемотаксисов бактерий поможет установить механизмы памяти.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]