- •1. Основные задачи оис
- •6. Современные информационные системы
- •7. Тенденции развития информационных систем
- •8. Агрегативное описание систем
- •9.Теоретико-множественный подход к описанию систем
- •10. Описание системы в виде черного ящика
- •11. Качественные методы описания системы
- •12.Количественные методы описания системы
- •13.Основные понятия и определения информационной системы.
- •14. Рассмотрение информационной системы как открытой системы
- •15.Этапы обращения информации
- •16.Виды информационных систем.
- •17. Понятия сообщений, сигнала.
- •18. Измерение информации
- •19. Основные меры информации
- •Синтаксическая мера информации.
- •Семантическая мера информации
- •Прагматическая мера информации
- •20.Энтропия.
- •21. Энтропия объединения двух статистически независимых источников информации
- •22. Условная энтропия
- •23. Энтропия объединения двух статистически связанных ансамблей
- •24. Дифференциальная энтропия и ее свойства
- •25.Эпсилон-энтропия случайной величины
- •1.7. Эпсилон-энтропия случайной величины
- •26.Количество информации
- •27. Скорость передачи информации и пропускная способность каналов связи
- •28.Потери в канале связи
- •29.Среднее количество принятой информации
- •30. Техническая скорость передачи
- •31. Скорость передачи информации
- •32. Пропускная способность дискретных каналов связи
- •33. Математические модели сигналов
- •35. Временная форма представления детерминированных сигналов
- •36.Частотная форма представления детерминированных сигналов в этом случае в качестве базисных выбраны функции:
- •(Такие функции целесообразно выбирать при анализе инвариантных во времени линейных систем). Для периодического сигнала u(t) коэффициенты сk для базисных функций называются спектром и определяются
- •37. Спектры периодического сигнала
- •38. Спектры непериодических сигналов
- •39. Распределение энергии в спектре
- •40. Соотношение между длительностью импульсов и шириной их спектров.
- •41. Каналы и системы связи
- •42. Основные определения
- •43. Непрерывная модуляция (амплитудная, частотная, фазовая)
- •44.Импульсная модуляция (амплитудно-импульсная, широтно импульсная, частотно-импульсная модуляция)
- •45. Цифровые методы модуляции (импульсно-кодовая, дифференциальная, дельта–модуляция).
- •46. Спектральный анализ модулированных колебаний.
- •47.Кодирование информации
- •48. Общие понятия теории кодирования
- •49.Аналоговые преобразователи
- •50. Эффективное кодирование (Методика Шеннона и Фэно, методика Хафмена)
- •51. Методы сжатия информации
- •52. Помехоустойчивое кодирование
- •53.Линейные групповые коды
- •Задача 12
- •54. Технические средства кодирования и декодирования для групповых кодов. Циклическое кодирование
- •55. Квантование информации
- •56. Классификация методов дискретизации
- •57, Дикретизация по времени
- •58. Выбор точности отсчетов по теореме Котельникова
- •59. Квантование по уровню
- •60. Проблемы развития современных ис Проблемы современных информационных систем
- •Какие преимущества дают облачные системы?
37. Спектры периодического сигнала
Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы называют спектром этого негармонического сигнала.
Спектр наглядно можно представить в виде спектральной диаграммы – так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы. При этом по горизонтальной оси в некотором масштабе откладывают частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.
Например, если некоторый периодический несинусоидальный сигнал описывается рядом
,
то его aмплитудную
спектральную диаграмму смотри на рисунке
6 а , а частотную – на рисунке 6 б.
Рисунок 6
38. Спектры непериодических сигналов
Непериодический сигнал легко получить из периодического, увеличивая период вплоть до Т ≥ ∞ . Спектры амплитуд для сигналов с разными периодами .
При увеличении периода сигнала частота первой гармоники ω1 = 2π/Т понижается. Спектральные линии становятся гуще. Амплитуды гармоник уменьшаются. Последнее становится понятным, если учесть, что энергия сигнала, оставаясь неизменной, перераспределяется теперь между возросшим числом гармоник. Естественно, доля каждой гармоники в общем сигнале падает.
Следовательно, при переходе к непериодическому сигналу (например, к одиночному импульсу) мы получаем в спектре такого сигнала вместо отдельных гармоник бесконечно большое число синусоидальных колебаний с бесконечно близкими частотами, заполняющими всю шкалу частот. Причем амплитуда каждого такого колебания становится исчезающе малой, потому что на его долю приходится бесконечно малая часть энергии сигнала. Другими словами, в любой бесконечно узкой полосе частот мы всегда обнаружим синусоидальное колебание, правда, бесконечно малой амплитуды.
Поскольку сравнивать между собой бесконечно малые величины неудобно, то вместо амплитуд Ак по оси ординат – откладывают произведение Ак Т, которое с увеличением периода Т остается постоянным. В новых координатах спектр. Понятие спектра амплитуд здесь лишено смысла и заменяется понятием спектральной плотности амплитуд, которая указывает, по сути, на удельный вес бесконечно малой амплитуды синусоидального колебания в любой бесконечно узкой полосе частот. Понятие спектра фаз заменяется понятием спектральной плотности фаз.Таким образом, спектр непериодического сигнала является в общем случае не дискретным, а непрерывным .
39. Распределение энергии в спектре
Пусть непериодический сигнал описывается функцией ƒ(t). Тогда энергию, выделяемую сигналом на сопротивлении в 1 ом, можно записать:
.
Предположим, что ƒ(t) абсолютно интегрируема (интеграл сходится). Выразим энергию W через модуль спектральной характеристики F(ω).
Квадрат модуля спектра амплитуд можно представить в виде http://peredacha-informacii.ru/ :
,
где F(–jω) – комплексно-сопряженная функция от спектральной характеристики F(jω).
;
.
Согласно определению можно записать:
.
Рассмотрим выражение:
и поменяем очередность интегрирования
.
Однако в соответствии с обратным преобразованием Фурье:
.
Или окончательно:
.
Оказывается, что энергия при интегрировании квадрата временной функции во временном интервале равняется энергии при интегрировании квадрата модуля спектра амплитуд по всему интервалу частот (теорема Парсеваля).
