- •1. Основные задачи оис
- •6. Современные информационные системы
- •7. Тенденции развития информационных систем
- •8. Агрегативное описание систем
- •9.Теоретико-множественный подход к описанию систем
- •10. Описание системы в виде черного ящика
- •11. Качественные методы описания системы
- •12.Количественные методы описания системы
- •13.Основные понятия и определения информационной системы.
- •14. Рассмотрение информационной системы как открытой системы
- •15.Этапы обращения информации
- •16.Виды информационных систем.
- •17. Понятия сообщений, сигнала.
- •18. Измерение информации
- •19. Основные меры информации
- •Синтаксическая мера информации.
- •Семантическая мера информации
- •Прагматическая мера информации
- •20.Энтропия.
- •21. Энтропия объединения двух статистически независимых источников информации
- •22. Условная энтропия
- •23. Энтропия объединения двух статистически связанных ансамблей
- •24. Дифференциальная энтропия и ее свойства
- •25.Эпсилон-энтропия случайной величины
- •1.7. Эпсилон-энтропия случайной величины
- •26.Количество информации
- •27. Скорость передачи информации и пропускная способность каналов связи
- •28.Потери в канале связи
- •29.Среднее количество принятой информации
- •30. Техническая скорость передачи
- •31. Скорость передачи информации
- •32. Пропускная способность дискретных каналов связи
- •33. Математические модели сигналов
- •35. Временная форма представления детерминированных сигналов
- •36.Частотная форма представления детерминированных сигналов в этом случае в качестве базисных выбраны функции:
- •(Такие функции целесообразно выбирать при анализе инвариантных во времени линейных систем). Для периодического сигнала u(t) коэффициенты сk для базисных функций называются спектром и определяются
- •37. Спектры периодического сигнала
- •38. Спектры непериодических сигналов
- •39. Распределение энергии в спектре
- •40. Соотношение между длительностью импульсов и шириной их спектров.
- •41. Каналы и системы связи
- •42. Основные определения
- •43. Непрерывная модуляция (амплитудная, частотная, фазовая)
- •44.Импульсная модуляция (амплитудно-импульсная, широтно импульсная, частотно-импульсная модуляция)
- •45. Цифровые методы модуляции (импульсно-кодовая, дифференциальная, дельта–модуляция).
- •46. Спектральный анализ модулированных колебаний.
- •47.Кодирование информации
- •48. Общие понятия теории кодирования
- •49.Аналоговые преобразователи
- •50. Эффективное кодирование (Методика Шеннона и Фэно, методика Хафмена)
- •51. Методы сжатия информации
- •52. Помехоустойчивое кодирование
- •53.Линейные групповые коды
- •Задача 12
- •54. Технические средства кодирования и декодирования для групповых кодов. Циклическое кодирование
- •55. Квантование информации
- •56. Классификация методов дискретизации
- •57, Дикретизация по времени
- •58. Выбор точности отсчетов по теореме Котельникова
- •59. Квантование по уровню
- •60. Проблемы развития современных ис Проблемы современных информационных систем
- •Какие преимущества дают облачные системы?
33. Математические модели сигналов
Под математической моделью понимают описание сигнала на формальном языке математики, т.е. с помощью формул, неравенств или логических соотношений. Для описания одних и тех же сигналов могут быть использованы различные математические модели. Выбор модели определяется адекватностью модели реальному сигналу, назначением модели и др.
Особенностью моделей сигналов измерительной информации является доопытная неопределенность значений информативных параметров, обусловленная в общем случае неизвестными размерами измеряемых величин.
Существуют различные подходы к построению математических моделей сигналов.
Сигнал принимают квазидетерминированным. В этом случае для математического описания сигнала используют различные детерминированные функции времени.
Сигнал рассматривают как случайный процесс. Описание таких сигналов основывается на теории вероятностей и теории случайных функций.
Сигналы представляют в виде комбинации случайной и детерминированной составляющей, в частности в виде суммы сигнала измерительной информации и помехти.
34. Понятие сигнала и его модели
Сигнал- материальный носитель информации специально-создаваемый для передачи сообщений в ИС.
Материальную основу сигнала составляет какой-либо физический объект или процесс, называемый носителем (переносчиком) информации (сообщения). Носитель становится сигналом в процессе модуляции. Параметры носителя, изменяемые во времени в соответствии с передаваемым сообщением, называют информативными.
Модель - это выбранный способ описания объекта, процесса или явления, отражающий существенные с точки зрения решаемой задачи факторы.
Задачи повышения эффективности функционирования информационных систем связаны с установлением количественных соотношений между основными параметрами, характеризующими источник информации и канал связи. Поэтому при исследовании используют математические модели. Математическое моделирование может быть реализовано различными методами в зависимости от способа, которым определяются интересующие нас показатели.
Фундаментальные исследования базируются на методе аналитического моделирования, заключающемся в создании совокупности математических соотношений, позволяющих выявить зависимости между параметрами модели в общем виде. При этом широко используются модели, параметры которых противоречат физическим свойствам реальных объектов. Например, модель сигнала часто представляется суммой бесконечного числа функций, имеющих неограниченную продолжительность (синусоид). Поэтому важно обращать внимание на условия, при которых это не мешает получать результаты, соответствующие наблюдаемым в действительности.
Так как источник сообщений выдает каждое сообщение с некоторой вероятностью, то предсказать точно изменения значения информативного параметра невозможно. Следовательно, сигнал принципиально представляет собой случайное колебание и его аналитической моделью может быть только случайный процесс, определяемый вероятностными характеристиками.
Тем не менее, в случае детерминированного колебания условно так же говорят о детерминированном сигнале. Такой сигнал отображает известное сообщение, которое нет смысла передавать. Ему соответствует модель в виде функции, полностью определенной во времени.
Изучение моделей детерминированных сигналов необходимо по многим причинам. Важнейшая из них заключается в том, что результаты анализа детерминированных сигналов являются основой для изучения более сложных случайных сигналов. Это обусловлено тем, что детерминированный сигнал может рассматриваться как элемент множества детерминированных функций, составляющих в совокупности случайный процесс. Детерминированное колебание, таким образом, представляет собой вырожденную форму случайного процесса со значениями параметров, известными в любой момент времени с вероятностью, равной единице. Детерминированные сигналы имеют и самостоятельное значение. Они специально создаются для целей измерения, наладки и регулирования объектов информационной техники, выполняя роль эталонов.
