- •1. Озонирование плодов и овощей при хранении. Трубчатые озонаторы для холодильных камер
- •2. Отепление и размораживание пищевых продуктов, сущность и влияние на качество.
- •3. Основные принципы создания малоотходных экологически безопасных производств при переработке отходов (на примере производства экстракционной фосфорной кислоты).
- •4. Электрохимическая очистка сточных вод. Конструкции электролизеров. Электрофлотация. Области применения.
- •5. Понятие риска. Риск как мера опасности. Суть понятия «приемлемый риск»
- •6. Методы очистки сточных вод на предприятиях мойки автотранспорта
- •7. Использование микроводорослей в альтернативной энергетике. Культивирование микроводорослей.
- •8. Естественные и естественно-техногенные опасности. Стихийные явления.
- •9. Методы защиты ос от загрязнений при перевозке навалочных грузов
- •10. «Зеленые» технологии и производства в утилизации отходов жизнедеятельности человека.
- •11. Опасности производственной и бытовой среды
- •Разрешающая документация:
- •Цели и задачи экологического аудита в России.
- •17. Ретроспектива экологической деятельности предприятия.
- •Физическая сущность процесса получения водорода. Использование водорода в топливных элементах.
- •Механическая очистка промышленно-ливневых сточных вод от твердых примесей. Расчет поверхности осаждения горизонтального отстойника.
- •Переработка твердых отходов с получением товарной продукции. Физико-химические основы автоклавного метода получения вяжущих из фосфогипса.
- •Возобновляемая энергетика в рф: тенденции развития, мотивация.
- •Нормирование качества воды. Пдк для хозяйственно-питьевого и культурно-бытового пользования.
- •Возобновляемые источники энергии: виды, особенности, достоинства и недостатки.
- •Определение основных целей и задач программы экологического аудита
- •Цели и задачи экологического аудита в России.
- •Абсорбционные методы очистки газов. Область применения. Примеры конструкций аппаратов.
- •Метанол: способы получения, применение в качестве топлива.
- •Основные различия между овос и экологическим аудированием.
- •Волокнистые фильтры-туманоуловители: высокоскоростные и низкоскоростные. Примеры конструкций аппаратов.
- •Диметиловый эфир: физико-химические свойства.
- •Использование водорода в качестве альтернативного топлива.
- •Использование метода составления материальных балансов при проведении программы эа.
- •Коагуляция аэрозолей. Основные виды коагуляции.
- •Использование энергии биомасс. Основные источники получения энергии биомасс.
- •Понятие об опасности. Показатели опасности. Методы обнаружения опасностей.
- •Нейтрализаторы выхлопных газов автомобиля
- •Биогаз. Источники получения биогаза.
- •Схемы водоотведения сточных вод в мегаполисах. Схемы водоотведения сточных вод в мегаполисах.
- •47. Венчурный бизнес и венчурное инвестирование в области возобновляемой и альтернативной энергетики.
- •Цели, виды, формы и объекты венчурного финансирования
- •49. Способы получения электричества и тепла из солнечной энергетики. Достоинства технологий солнечной энергетики
- •50. Удаление из сточных вод крупнодисперсных загрязнителей: типы песколовок, расчет, конструкции. Методы и аппараты удаления грубодисперсных минеральных примесей. Примеры конструкций аппаратов.
- •51. Активный и пассивный методы создания защитной газовой среды при хранении плодов и овощей
- •Тбо, как возобновляемое альтернативное топливо. Принципиальная схема мсз.
- •53.Область применения флотационных установок в очистке сточных вод. Виды флотации. Методы интенсификации флотации.
- •54. «Зеленые» технологии, перспективы развития
- •55. Фильтрация сточных вод. Классификация фильтров. Конструкции фильтров. Типы фильтрующих загрузок и способы регенерации.
- •56. Биологическая очистка сточных вод. Принципы очистки сточных вод в аэротенках и метантенка. Область применения и порядок расчета.
- •57. Использование ветровой энергии. Виды ветрогенератора:
- •58. Методы переработки твердых отходов : обезвоживание, тепловая обработка, химическая переработка (привести примеры аппаратурного оформления)
1. Озонирование плодов и овощей при хранении. Трубчатые озонаторы для холодильных камер
Применение озона при холодильном хранении плодов и овощей позволяет снизить потери от гниения, понизить интенсивность дыхания, а также замедлить их созревание из-за окисления этилена и других летучих продуктов обмена веществ. При этом чувствительность к озону отдельных сортов овощей и фруктов различна. Так, по данным зарубежных специалистов, в частности Шомера, яблоки сорта Голден Делишес хорошо сохраняются при концентрации озона С=2...3 мг/м3, по результатам Ханзена и Бергера - при С=10...12 мг/м3. Ухудшается аромат яблок при концентрации озона больше 12 мг/м. Бекер отмечает, что озон не повлиял на интенсивность порчи яблок, которым предварительно были привиты разные болезни, но уничтожил неприятные запахи. Продолжительность хранения земляники, клубники, винограда удваивается при концентрации озона С=4...6 мг/м и продолжительности озонирования по 3 ч в сутки; при этом у земляники отмечено улучшение аромата. Рациональная концентрация озона при хранении бананов 3 мг/м3, более высокие концентрации приводят к появлению на кожице черных пятен. Наиболее устойчивы к действию озона, по данным Гане, апельсины (С = 40 мг/м3) и лук (С = 300 мг/м3): при данных концентрациях не происходит нарушения обмена веществ. Картофель хорошо сохраняется в среде озоно-воздушной смеси при С= 0,002...2,0 мг/м3
Для использования озона в процессе хранения яблок его действию подвергаются компоненты покровных тканей. Важную роль в обеспечении защиты плодов от увядания и поражения микроорганизмами играют воска кутикулы яблок [102]. Выявлено, что озон не приводит к значительным изменениям в химическом составе восков, однако он способен инициировать усиление основной защитной функции восков - снижение скорости влагопотерь. Высокие дозы обработки озоном приводят к поражению участков покровных тканей, лишенных воскового слоя, что вызывает возрастание скорости влагопотерь в целом. Периодическая обработка яблок в процессе хранения озоном низких концентраций (0,7...3,0 мг/м3, τ - 40...120 мин ежедневно) способна модифицировать процессы формирования воскового слоя и препятствовать накоплению продуктов окисления фарнезена в немВыявлено также, что различные сорта яблок по-разному реагируют на присутствие озона. Однако один из выводов [5] распространяется на все сорта яблок. Созревание ускоряется за счет выделения в присутствии озона из яблок этилена и других летучих веществ, которые приводят к побурению кожуры. Выделяющийся этилен быстро окисляется озоном. Когда озон не способен уже препятствовать побурению кожуры, то все равно затягивает и замедляет этот процесс путем нейтрализации летучих веществ. Этот процесс характерен и для ягодных и других культур, в том числе для бананов, апельсинов, малины, клубники и т. д. По мнению ряда исследователей, продолжительность хранения можно увеличить в среднем вдвое с одновременным сохранением тонкого аромата фруктов. Таким образом, при разработке режимов озонирования продуктов растительного происхождения необходим дифференцированный подход к выбору концентраций озона.
