- •Волков Сергей Николаевич землеустройство экономико-математические методы и модели
- •Раздел I
- •Глава 1
- •1.2. Математические методы, применяемые в экономических расчетах
- •Глава 2
- •1. Классификация математических моделей, применяемых в землеустройстве
- •Вычислении площадей треугольников и четырехугольников
- •4.3. Метод решения задачи на условный экстремум лагранжа
- •Глава 5
- •4. Годовые затраты на 1 га пашни в зависимости от размера территории (зерно-свекловичный тип хозяйства с развитым молочно-мясным скотоводством)
- •5.3. Определение оптимальных размеров полей севооборотов
- •5. Расчет оптимального размера поля севооборота
- •Глава 6 итерационные методы
- •6.1. Постановка и математическая формулировка
- •8. Расчет координат оптимального размещения ферм методом последовательных приближений
- •9. Расчет координат животноводческих комплексов
- •10. Расчет оптимальных координат молочного комплекса при селешш Большая Вруда (итерационный метод)
- •11. Анализ эффективности размещения животноводческих комплексов (тыс. Руб., в ценах 1990 г.)
- •12. Расчет значения предельной ошибки целевой функции
- •Раздел III
- •Глава 7
- •Глава 8 расчет параметров производственных функций
- •13. Исходные данные к задаче 8.1
- •8.2. Принцип наименьших квадратов
- •8.3. Системы нормальных уравнений
- •16. Исходные данные к задаче 8.2
- •18. Исходные данные к задаче 8.3
- •8.5. Применение линейных моделей регрессии
- •22. Исходные данные к задаче 8.5
- •Глава 9
- •9.2. Оценка погрешностей определения коэффициентов корреляции
- •25. Корреляционные и дисперсионные характеристики демонстрационных задач
- •26. Формулы для расчета экономических характеристик некоторых однофакторных производственных функций
- •27. Формулы для расчета предельных норм заменяемости для некоторых двухфакторных производственных функций
- •10.2. Примеры расчета экономических характеристик
- •28. Зависимость коэффициента эластичности Ег от стоимости животноводческих построек (х2)
- •Раздел IV
- •Глава 11
- •33. Расчет бета-коэффициентов уравнения регрессии
- •11.3. Обоснование укрупнения (разукрупнения)
- •Контрольные вопросы и задания
- •Глава 12
- •35. Расчет урожайности зерновых культур на землях различных категорий с учетом изменения факторов интенсификации
- •36. Динамика урожайности сельскохозяйственных культур в совхозе «40 лет Октября»
- •38. Планируемая урожайность, рассчитанная с использованием производственных функций, ц с 1 га
- •39. Основные показатели эффективности внесения минеральных удобрений на черноземных почвах
- •40. Расчет планируемой урожайности основных сельскохозяйственных культур по факторам интенсификации расчетпо конструктивным методом
- •41. Возможные урожаи полевых культур при 3 % использования фар
- •42. Сводные данные по планированию урожайности в совхозе «40 лет Октября»
- •Глава 13
- •43. Зависимость между размерами молочной фермы и удельными капиталовложениями
- •44. Расчет параметров уравнения гиперболы
- •46. Влияние механического состава почв на величину удельного сопротивления, кг/см2
- •47. Расчет значений коэффициента а2
- •54. Потери на холостые повороты агрегатов при поперечных работах и от недобора продукции пропашных культур в полосе поворотов при различной густоте лесных полос
- •55. Экономическая эффективность продольных (основных) полезащитных лесных полос при различной густоте посадок
- •57. Чистый доход в расчете на 1 га полевого севооборота
- •58. Влияние густоты сети полевых дорог на общую величину транспортных затрат и потерь от недобора продукции
- •1 Га пашни,
- •1 Га пашни,
- •60. Определение коэффициентов значимости факторов производственной функции
- •Раздел V
- •Глава 14 общая модель линейного программирования
- •63. Исходные данные к задаче 14.2
- •64. Исходные данные к задаче 14.3
- •65. Исходные данные к задаче 14.4
- •67. Характеристика вершин области допустимых значений задачи 14.5
- •68. Первая симплекс-таблица задачи 14.5
- •69. Вторая симплекс-таблица задачи 14.5
- •70. Третья симплекс-таблица задачи 14.5
- •71. Четвертая симплекс-таблица задачи 14.5
- •72. Пятая (последняя) симплекс-таблица задачи 14.5
- •74. Исходные данные к задаче 14.6
- •75. Исходные данные к задаче 14.7
- •76. Оптимальное решение прямой задачи 4.6
- •78. Оптимальное решение прямой задачи 4.7
- •79. Оптимальное решение двойственной задачи
- •Глава 15 распределительная (транспортная) модель
- •80. Исходные данные к задаче 15.1
- •81. Исходные данные к задаче 15.2
- •82. Исходные данные к задаче 15.3
- •83. Исходные данные к задаче 15.4
- •84. Табличная форма представления транспортной модели
- •85. Исходные данные к задаче 15.5
- •86. Нахождение опорного решения задачи 15.5 методом минимального
- •87. Нахождение опорного решения задачи 15.5 методом аппроксимации*
- •15.3. Метод потенциалов
- •88. Цикл испытуемой клетки (3,5)
- •89. Цикл испытуемой клетки (2,5)
- •90. Потенциалы и оценки* для опорного решения задачи 15.5, полученного методом аппроксимации
- •91. Потенциалы и оценки* для опорного решения задачи 15.5, полученного методом минимального элемента
- •92. Потенциалы и оценки на втором шаге решения задачи 15.5
- •93. Потенциалы и оценки на третьем шаге решения задачи 15.5
- •94. Оптимальный план закрепления источников кормов за фермами
- •15.4. Особые случаи постановки и решения распределительных задач
- •95. Исходные данные к задаче 15.6
- •96. Сбалансированная исходная транспортная таблица задачи 15.6
- •97. Исходная транспортная таблица задачи 15.6, в которой учтены требование сбалансированности задачи и первые три дополнительных условия*
- •101. Оптимальный план распределения кормовых культур по участкам
- •102. Исходные данные к задаче 15.7
- •103. Опорный план задачи 15.7
- •104. Второй (оптимальный) план задачи 15.7
- •106. Опорный план задачи 15.3
- •107. Оптимальный план задачи 15.3
- •108. Средние значения коэффициентов урожайности культур в зависимости
- •Глава 16
- •109. Последняя симплекс-таблица для задачи 14.4
- •16.2. Коэффициенты замещения
- •16.3. Использование коэффициентов замещения
- •113. Исходные данные к задаче 16.1
- •114. Оптимальное решение прямой задачи 16.1
- •115. Оптимальное решение двойственной задачи 16.1*
- •16.6. Альтернативные решения распределительных задач
- •117. Исходные данные к задаче 16.2
- •121. Оптимальное решение задачи 16.2 с дополнительным условием (пример 1)*
- •Глава 17
- •122. Исходные данные к задаче 17.1
- •123. Исходная симплекс-таблица задачи 17.1
- •124. Первая расчетная симплекс-таблица 17.1
- •17.3. Роль ограничений в формировании облика
- •Глава 18
- •130. Исходная таблица
- •131. Оптимальный план
- •132. Исходная таблица
- •133. Первый оптимальный план
- •134. Промежуточный опорный план
- •135. Последний оптимальный план
- •136. Вероятностный и детерминированный планы
- •139. Исходные и расчетные данные для вычисления значений ресурсов в ограничениях
- •140. Исходные данные для вычисления коэффициентов целевой функции
- •141. Исходные данные для расчета гц
- •142. Схема двухэтапной стохастической задачи
- •143. Схема числовой стохастической модели оптимизации производственной структуры
- •Контрольные вопросы и задания
- •Раздел VI
- •Глава 19 информационное обеспечение моделирования
- •19.3. Построение матрицы экономико-математической
- •Контрольные вопросы и задания
- •Глава 20
- •146. Баланс гумуса в почве под посевами различных сельскохозяйственных культур
- •Глава 21
- •147. Вычисление значений ак1
- •148. Числовые значения ак1*
- •Раздел VII
- •152. Сведения о максимально возможных объемах и эффективности различных мероприятий по освоению и интенсификации использования земель
- •153. Матрица экономико-математической модели задачи оптимизации мероприятий по освоению и интенсификации использования
- •Контрольные вопросы и задания
- •Глава 23
- •154. Основные переменные
- •155. Исходные данные
- •23.2. Оптимизация трансформации
- •157. Качественная характеристика участков
- •158. Расчет значения Сд для полевого севооборота № 1 по 1-му участку
- •159. Оптимизация трансформации угодий
- •161. Расчет капитальных затрат на трансформацию угодий
- •162. Сводная таблица оценки вариантов, тыс. Руб.
- •Глава 24
- •163. Исходные данные для системы ограничений
- •164. Ориентировочные коэффициенты изменения урожайности культур в зависимости от их предшественников по отношению к средней урожайности хозяйства (зона неустойчивого увлажнения)
- •165. Расчет с,- по полевому севообороту
- •166. Доля сельскохозяйственных культур в рекомендуемых к освоению севооборотах
- •167. Исходные данные для построения экономико-математической модели задачи
- •168. Матрица задачи по проектированию системы севооборотов хозяйства
- •24.2. Размещение севооборотов и сельскохозяйственных
- •170. Фрагмент матрицы оптимального размещения культур (севооборотов) по участкам с различным плодородием
- •171. Фактическое размещение посевов сельскохозяйственных культур
- •172. Оценка предшественников сельскохозяйственных культур
- •173. Матрица задачи по оптимизации плана перехода к запроектированным севооборотам
- •174. Корректировка плана перехода к запроектированным севооборотам
- •175. Структура посевов после корректировки, га
- •176. Окончательный план перехода к запроектированным севооборотам
- •Глава 25
- •25.2. Особенности подготовки исходной информации и пример решения
- •178. Состав и площадь сельскохозяйственных угодий на год землеустройства и по проекту
- •179. Число работников и общий объем трудовых ресурсов
- •Глава 26
- •181. Матрица экономико-математической модели задачи проектирования противоэрозионных мероприятий
- •182. Результаты решения задачи проектирования противоэрозионных мероприятий
- •184. Расчет допустимого слоя стока
- •185. Зависимость площадей линейных элементов организации территории
- •26.3. Оптимизация размещения посевов
- •188. Исходная матрица задачи
- •Глава 27
- •27.2. Особенности подготовки
- •191. Результаты решения задачи организации территории плодовых и ягодных многолетних насаждений
- •Глава 28
- •28.2. Особенности подготовки исходной информации и пример решения
- •192. Допустимые площади кормовых культур и пастбищ*
- •193. Расчет потребности в зеленом корме
- •194. Расчет потребности в кормах с пашни
- •Контрольные вопросы и задания
- •Глава 29
- •199. Результаты решения экономико-математической задачи
- •Контрольные вопросы и задания
- •Раздел VIII
- •Глава 30
- •30.2. Особенности подготовки исходной информации и пример решения
- •200. Продолжительность рабочего периода в крестьянском хозяйстве
- •201. Нормы внесения минеральных удобрений под сельскохозяйственные культуры, кг д. В. На 1 т продукции*
- •202. Технико-экономические характеристики животноводческих хозяйств*
- •204. Математическая модель молочно-картофелеводческого крестьянского хозяйства
- •205. Выход кормов с 1 га культурных пастбищ
- •206. Оптимальные размеры землевладений и структура производства в крестьянском хозяйстве молочно-картофелеводческого направления
- •30.3. Автоматизация расчетов модели на эвм
- •207. Значения переменных задачи
- •31.2. Особенности подготовки
- •209. Состав земельных угодий до и после перераспределения земель
- •Глава 32
- •32.1. Экономико-математическая модель
- •32.2. Экономико-математическая модель
- •210. Исходная матрица задачи
- •211. Оптимальный план формирования сырьевых зон перерабатывающих предприятий
- •Контрольные вопросы и задания
- •Литература
- •Раздел I. Общие сведения об экономико-математических методах и моделировании в землеустройстве 9
- •Глава 1. Моделирование и современные методы вычислений 9
- •Глава 2. Основные этапы развития математического моделирования в аграрно- экономической и землеустроительной науке 32
- •Глава 3. Классификация математических моделей, применяемых в земле устройстве 57
- •Раздел II. Аналитическое моделирование в земле устройстве 72
- •Глава 4. Построение и исследование аналитических моделей 72
- •Глава 5. Применение дифференциального и интегрального исчисления при построении оптимизационных аналитических моделей 92
- •Глава 9. Оценка производственных функций с использованием методов корре ляционно-регрессионного анализа 161
- •Глава 10. Экономические характеристики производственных функций и
- •Раздел IV. Применение производственных функций
- •Глава 11. Оптимизация интенсивности использования земли при землеуст ройстве 197
- •Глава 12. Планирование урожайности сельскохозяйственных культур 209
- •Глава 13. Разработка землеустроительных нормативов и решение нестан дартных задач 234
- •Раздел V. Методы математического программирования
- •Глава 14. Общая модель линейного программирования 261
- •Глава 15. Распределительная (транспортная) модель 303
- •Глава 16. Анализ и корректировка оптимальных решений 344
- •Глава 17. Дополнительные аспекты решения задач линейного программиро вания 383
- •Глава 18. Некоторые виды задач математического программирования 398
- •Раздел VI. Основы экономико-математического моделирования 436
- •Глава 19. Информационное обеспечение моделирования 436
- •Глава 20. Выбор переменных и построение ограничений задачи 451
- •Глава 21. Критерии оптимальности при решении землеустроительных задач 474
- •Раздел VII. Экономико-математические модели
- •Глава 22. Экономико-математическая модель оптимизации мероприятий
- •Глава 23. Экономико-математическая модель трансформации угодий 506
- •Глава 24. Экономико-математическая модель организации системы сево оборотов хозяйства 519
- •Глава 25. Экономико-математическая модель оптимизации структуры посевных площадей при агроэкономическом обосновании проектов внутрихо зяйственного землеустройства 553
- •Глава 26. Экономико-математическая модель проектирования комплекса противоэрозионных мероприятий в условиях развитой водной эрозии почв 566
- •Глава 31. Экономико-математическая модель оптимизации перераспреде ления земель сельскохозяйственных предприятий 614
- •Глава 32. Экономико-математические модели в схемах землеустройства 659
121. Оптимальное решение задачи 16.2 с дополнительным условием (пример 1)*
\ |
У |
1 |
2 |
3 |
4 |
5 |
л, |
/ |
а,\ |
80,8 |
84,7 |
90,2 |
92,6 |
94,2 |
|
1 |
80,0 |
1,8 1,0 |
4,7 3400 |
10,2 |
30,5 |
61,4 |
3400 |
0 |
17,9 |
47,2 |
|||||
2 |
79,9 |
1,9 | 1,0 |
4,8 3320* |
10,3 1080 |
30,6 |
61,5 |
4400 |
17,9 |
47,2 |
||||||
3 |
78,4 |
2,4 6800 |
6,31 |
12,0 |
34,0 |
64,0 |
6800 |
0,9 |
0,2 |
19,8 |
48,2 |
||||
4 |
78,3 |
2,5 2940* |
6,4 460* |
12,3 |
38,7 |
64,5 |
3400 |
0,4 |
24,4 |
48,6 |
|||||
5 |
78,2 |
2,6 4070 |
7,4 |
24,0 |
41,4 |
69,5 |
4070 |
3,9 |
12,0 |
27,0 |
53,5 |
||||
6 |
87,8 |
0,2 7,2 |
0,8 |
2,4 2120 |
4,8 2000 |
6,4 1000 |
5120 |
39 |
|||||||
7 |
78,5 |
2,3 3590 |
6,3 од |
11,8 |
33,5 |
64,0 |
3590 |
0,1 |
19,4 |
~48^Г |
|||||
8 |
80,4 |
1,8 1,4 |
4,3 860 |
10,3 |
30,6 |
61,4 |
860 |
1 0,5 |
18,4 |
47,6 |
|||||
9 |
77,0 |
3,8 2400* |
10,0 |
30,0 |
60,0 |
80,0 |
2400 |
2,3 |
16,8 |
44,4 |
62,8 |
||||
В] |
19800 |
8040 |
3200 |
2000 |
1000 |
\^404() 34040\ |
|
*Звездочкой помечены значения х«, отличающиеся от аналогичных значений п табл. 118. ^р, = 122 399 руб.
Пример 2. Пусть требуется увеличить общий объем переработ ки свеклы на 300 т. Это разрешается сделать за счет увеличения ее производства только в одном хозяйстве и соответствующего увеличения объема переработки на одном заводе. Какие коп к ретно хозяйство и завод следует выбрать?
В данном случае, если мы выберем ./-й завод и /-е хозяйство, целевая функция по сравнению со значением, соответствуюидим исходному оптимальному решению, изменится на величину
Д2'=300(р/-а;).
380
Следовательно, для минимизации Л2Г необходимо выбрать } таким, чтобы значение (3,- было наименьшим, а / — таким, чтобы значение ос,- было наибольшим, то есть увеличить на 300 т производство в 6-м хозяйстве и переработку на 1-м заводе (см. табл. 118).
Пример 3. Пусть на 3-м заводе объем переработки свеклы уменьшается на 400 т, но общий объем переработки (и производства) свеклы должен сохраниться. Разрешается увеличить объем переработки свеклы на одном заводе, уменьшить объем производства в одном хозяйстве и увеличить его также в одном хозяйстве. Какие конкретно хозяйства и завод следует выбрать?
В этом примере, если выбрать у'-й завод (объем переработки увеличивается на 400 т), /ге хозяйство (объем производства возрастает на 400 т) и /2"е хозяйство (объем производства уменьшается на 400 т), то целевая функция по сравнению со значением, соответствующим исходному оптимальному решению, изменится на
Л7= 400(|Зу- рз) + 400(-а,-1 + а/?).
Следовательно, для минимизации Д2 необходимо выбрать ] таким, чтобы значение (3,- было наименьшим, /\ — чтобы значение а;1 было наибольшим, /2 — чтобы значение ад было наименьшим. В данном случае объем производства свеклы необходимо увеличить на 400 т в 6-м хозяйстве, уменьшить на 400 т в 9-м хозяйстве и увеличить объем переработки на 400 т на 1-м заводе (см. табл. 118).
Анализ решений, полученных в рассмотренных примерах, подтвердил правомерность использования потенциалов в поставленных задачах.
Контрольные вопросы и задания
Назовите основные блоки информации, содержащиеся в последней (оптимальной) симплекс-таблице.
Что характеризуют: основные переменные, попавшие в базис последней симплекс-таблицы? Не попавшие в базис? Остаточные переменные, попавшие в базис? 11е попавшие в базис? Избыточные переменные, попавшие в базис? Не попавшие в базис?
Что характеризуют коэффициенты замещения симплекс-таблицы?
Что означает выражение «ввести в оптимальный план небазисную переменную»?
Каким образом меняется решение задачи линейного программирования при ииедении в план небазисной переменной? Приведите соответствующие расчетные формулы.
Докажите с помощью формулы расчета нового значения целевой функции, ■но введение в план небазисной основной переменной (то есть переменной, соот-нстствующей неэффективной отрасли) приводит к уменьшению значения целевой функции (в задачах на максимизацию целевой функции).
Какому изменению ресурса соответствует введение в оптимальный план по-пожительного значения остаточной переменной? Отрицательного значения?
Какому изменению планового задания соответствует введение в оптимальный план положительного значения избыточной переменной? Отрицательного ■шачения?
381
9. В каких случаях может оказаться необходимой корректировка оптимального плана задачи линейного программирования?
Перечислите основные действия при введении в оптимальный план небазисной основной переменной.
Как определить пределы допустимых значений вводимой в оптимальный план небазисной основной переменной?
Перечислите основные действия при введении в оптимальный план небазисной остаточной переменной.
Как следует поступать, если в оптимальный план требуется ввести значение небазисной основной переменной, выходящее за пределы интервала допустимых значений?
Как определить пределы допустимых значений вводимой в оптимальный план небазисной остаточной переменной?
Укажите основные действия при введении в оптимальный план небазисной избыточной переменной.
Как определить пределы допустимых значений вводимой в оптимальный план небазисной избыточной переменной?
Что такое двойственные оценки оптимального плана?
Дайте экономическую интерпретацию двойственной оценки, соответствующей небазисной остаточной переменной; небазисной избыточной переменной; небазисной основной переменной.
Каков смысл термина «скрытые цены»?
Как будут меняться элементы индексной строки оптимальной симплекс-таблицы при изменении коэффициента в целевой функции при базисной переменной?
Как оценить пределы изменения коэффициента в целевой функции при базисной переменной, если поставлено условие сохранения структуры (состава базисных переменных) оптимального плана?
Как будут меняться элементы индексной строки оптимальной симплекс-таблицы при изменении коэффициента в целевой функции при небазисной переменной?
Как оценить пределы изменения коэффициента в целевой функции при небазисной переменной, если поставлено условие сохранения структуры (состава базисных переменных) оптимального плана?
При каком изменении коэффициента при небазисной переменной в целевой функции соответствующая неэффективная отрасль станет эффективной?
Назовите основные виды корректировок решения транспортной задачи.
Что называется альтернативным оптимальным решением транспортной задачи?
По каким параметрам оптимальной транспортной таблицы можно судить о наличии альтернативных оптимальных решений?
Как с помощью циклов можно найти альтернативные оптимальные решения?
В каких случаях может возникнуть необходимость в определении альтернативных неоптимальных решений?
Каким образом с помощью циклов можно построить альтернативное неоптимальное решение для соблюдения ограничения вида х„< И!
Опишите универсальный способ наилучшего преобразования оптимального решения при введении дополнительного ограничения вида ху< й.
Приведите формулу для расчета целевой функции транспортной задачи через потенциалы поставщиков и потребителей. Какова экономическая интерпретация потенциалов, согласующаяся с этой формулой?
Если /-й поставщик и у'-й потребитель связаны, то есть в оптимальной транспортной таблице клетка (/, ]) занята, как изменится оптимальное решение и значение целевой функции в случае одновременного увеличения (уменьшения) величин А( и В1 на единицу ресурса?
Какие виды задач по корректировке оптимального решения можно решать, используя экономическую интерпретацию потенциалов, если необходимы изменения несвязанных величин Л,- и В/!
382
