- •1 Виды коротких замыканий.
- •2 Причины возникновения и последствия к.З.
- •3 Действие токов к.З.
- •4 Назначение расчетов токов к.З и требования к ним.
- •5 Составление схем замещения.
- •6 Преобразование схем замещения.
- •7 Система относительных единиц для расчетов токов к.З.
- •8 Вычисление начального значения периодической составляющей тока трехфазного к.З.
- •9 Расчет трехфазного к.З. В относительных единицах.
- •10 Вычисление ударного тока к.З.
- •11 Общие положения о несимметричных к.З.
- •12 Применение метода симметричных составляющих к исследованию переходных процессов.
- •13,15 Схемы замещения прямой и обратной последовательности.
- •14 Схема нулевой последовательности.
- •16 Двухфазное короткое замыкание.
- •17 Однофазное короткое замыкание.
- •18 Двухфазное короткое замыкание на землю.
- •19 Соотношение токов двухфазного и трехфазного к.З.
- •20 Учет переходного сопротивления в месте к.З.
- •21Перех. Проц. В сетях с изолированной нейтралью. Особенности распределительных сетей.
- •22 Замыкание фазы на землю в сети с изолированной нейтралью.
- •23 Компенсация емкостного тока замыкания на землю.
- •24 Смещение нейтрали.
- •25 Расчет токов к.З. В установках до 1000 в.
- •26 Средства ограничения токов к.З.
- •27 Токоограничивающие устройства.
- •28 Оптимизация режима заземления нейтралей в эл.Сетях.
- •29 Координация уровней токов к.З. И параметров электрооборудования.
- •33.2 Методы оценки статической устойчивости
- •34 Основные виды переходных режимов
- •35,45. Критерий статической устойчивости
- •36 Способ площадей для анализа динамической устойчивости
- •37 Понятие статической и динамической устойчивости.
- •38 Влияние на переходные процессы регуляторов возбуждения
- •39 Алгебраические критерии устойчивости
- •40 Статические характеристики системы
- •41 Критерии устойчивости многомашинной системы
- •42 Схемы замещения генераторов
- •43 Динамические характеристики системы при изменениях частоты
- •44 Устойчивость нагрузки.
- •46 Учет переходных процессов в регуляторах скорости и возбуждения
- •47 Виды возмущения режима
- •48 Метод последовательных интервалов
- •49 Методы оценки динамической устойчивости
- •50 Критерии устойчивости по Гурвицу
- •51 Методы повышения устойчивости энергосистем
- •52 Результирующая устойчивость и методика их анализа
- •53 Статические характеристики нагрузки
- •54 Определение собственных и взаимных проводимостей системы
47 Виды возмущения режима
Аварийные возмущения в системе могут быть значительными и длительными. С помощью средств автоматического регулирования иногда не удается восстановить частоту и приходится прибегать дополнительно к ручному вмеиательству, расширяя регулировочный диапазон, ох-каючая потребителей и включая резервные агрегаты.
При нормальной эксплуатации системы всегда имеются некоторые малые возмущающие воздействия, вызывающие малые возмущения режима, например изменения нагрузки.
Это означает, что строго неизменного режима в системе не существует и, говоря об установившемся режиме, в сущности всегда имеют в виду режим малых возмущений.
При этом предполагают, что отклонения параметров режима, связанные с этими возмущениями, происходят около некоторого условно принятого исходного равновесного состояния.
Малые возмущения не должны вызывать нарушения устойчивости системы, т.
Система должна быть устойчива при этих малых возмущениях, иначе говоря, она должна обладать статической устойчивостью.
48 Метод последовательных интервалов
49 Методы оценки динамической устойчивости
50 Критерии устойчивости по Гурвицу
Критерий устойчивости Гурвица — один из способов анализа линейной стационарной динамической системы на устойчивость, разработанный немецким математиком Адольфом Гурвицом. Наряду с критерием Рауса является представителем семейства алгебраических критериев устойчивости, в отличие от частотных критериев, таких, как критерий устойчивости Найквиста — Михайлова. Достоинством метода является принципиальная простота, недостатком - необходимость выполнения операции вычисления определителя, которая связана с определенными вычислительными тонкостями (например, для больших матриц может появиться значительная вычислительная ошибка).
Метод
работает с коэффициентами
характеристического
уравнения
системы. Пусть
—
передаточная
функция
системы, а
—
характеристическое уравнение системы.
Представим характеристический полином
в
виде
где
-
оператор Лапласа.
Из
коэффициентов характеристического
уравнения строится определитель
Гурвица
по
алгоритму:
1)
по главной диагонали слева направо
выставляются все коэффициенты
характеристического уравнения от
до
;
2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали сверху вниз;
3)
на место коэффициентов с индексами
меньше нуля или больше
ставятся
нули.
51 Методы повышения устойчивости энергосистем
Устойчивость энергосистемы — это способность ее возвращаться в исходное состояние при малых или значительных возмущениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное положение ее.
Основным способом повышения устойчивости является увеличение предела передаваемой мощвости. Этого можно достичь повышением э.д.с. генераторов, напряжения на шинах нагрузки или уменьшением индуктивного сопротивления линии. Основными средствами повышения устойчи вости являются следующие:
- применение быстродействующих автоматических регуляторов напряжения, увеличивающих э. д. с. генераторов при возрастании нагрузки. Для повышения динамической устойчивости при к. з. особенно большое значение имеет форсировка возбуждения, при которой контакты специального реле шунтируют реостаты возбуждения; в результате в обмотку возбудителя подается наибольший возможный ток («потолочное» возбуждение). В современных генераторах «потолочный» ток возбуждения составляет 1,8—2.0 его номинального значения;
- повышение напряжений действующих линий, например со 110 на 150 или иа 220 кВ;
- уменьшение индуктивного сопротивления линий, достигаемое расщеплением проводов мощных линий на два или три, или применением продольной емкостной компенсации с последовательным включением в линию батареи конденсаторов;
- применение быстродействующих выключателей, защит и автоматического повторного включения линий.
На устойчивость энергосистемы может улучшить использование
