Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по Понамарю.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
319.37 Кб
Скачать

Принцип действия

На обмотку статора подаётся переменное трехфазное напряжение, под действием которого по этим обмоткам протекает трехфазная система токов. Поскольку обмотки в асинхронной машине сдвинуты друг от друга в геометрическом отношении на 120 градусов, и, так как в симметричной системе токи в обмотках имеют фазовый сдвиг в 120 градусов, в таких обмотках создаётся вращающееся магнитное поле. Вращающееся магнитное поле, пересекая проводники обмотки ротора, индуктирует в них электродвижущую силу, под действием которой в обмотке ротора протекает ток, который искажает магнитное поле статора, увеличивая его энергию, что ведет к возникновению электромагнитной силы, под действием которой ротор начинает вращаться (для более простого объяснения, можно сослаться на силу Ампера, действующую на проводники обмотки ротора, которые находятся в магнитном поле статора; однако, в действительности, величина магнитной индукции в пазу, где располагается проводник с током, достаточно мала, поскольку магнитный поток проходит преимущественно по зубцам). Чтобы в обмотке ротора возникала ЭДС, необходимо, чтобы скорость вращения ротора отличалась от скорости вращения поля статора. Поэтому ротор вращается асинхронно относительно поля статора, а двигатель называется асинхронным. Относительная разность скорости вращения ротора от скорости вращения поля статора называется скольжением (s). Номинальное скольжение обычно составляет 2-8% .

Билет №2

1. Электрический ток — направленное (упорядоченное) движение заряженных частиц.

Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводниковсверхпроводниках не происходит выделения теплоты);

  • изменение химического состава проводников (наблюдается преимущественно в электролитах);

  • создание магнитного поля (проявляется у всех без исключения проводников).

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля.

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля). С математической точки зрения  — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают; однако в магнитной среде вектор не несет уже того же физического смысла, являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

Магнитное поле можно назвать особым видом материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

В месте, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.

Электрический ток(I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным.

Работа сил электрического поля: 

Для преодоления сил электрического поля при внесении в него электрического заряда необходимо затрачивать определенную работу.

Запас энергии (потенциальная энергия) единицы количества электри­чества, находящейся в данной точке электрического поля, называется потенциалом.

Потенциал данной точки электрического поля численно равен ра­боте, затрачиваемой на внесение заряда в один кулон из бесконечности в эту точку поля. Эта работа равна потенциальной энергии, которой обладает заряд в один кулон в рассматриваемой точке поля, т. е.

φ = A/Q.

Единицей измерения потенциала является вольт (В).

При перемещении положительного заряда Q в однородном электри­ческом поле из одной точки в другую на расстояние ℓ в направлении поля силы поля совершают работу А, равную А=Fℓ.

Отношение рабо­ты А по перемещению заряда Q между двумя точками электрического поля к заряду называется напряжением между указанными точками, т. е.

U = А/Q

Таким образом, напряжение между двумя точками численно равно работе сил поля при перемещении между этими точками положитель­ного единичного заряда.

Работа сил магнитного поля: 

На проводник с током в магнитном поле действуют силы, которые определяются с помощью закона Ампера. Если проводник не закреплен (например, одна из сторон контура сделана в виде подвижной перемычки, рис. 1), то под действием силы Ампера он в магнитном поле будет перемещаться. Значит, магнитное поле совершает работу по перемещению проводника с током. Для вычисления этой работы рассмотрим проводник длиной l с током I (он может свободно двигаться), который помещен в однородное внешнее магнитное поле, которое перпендикулярно плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера, рассчитывается по формуле Под действием данной силы проводник передвинется параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, которая совершается магнитным полем, равна так как ldx=dS — площадь, которую пересекает проводник при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, который пронизывает эту площадь. Значит, (1) т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Данная формула справедлива и для произвольного направления вектора В. Рассчитаем работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Будем считать, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения перейдет в положение М', изображенное на рис. 2 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж или от нас) дано на рисунке. Контур М условно разобьем на два соединенных своими концами проводника: AВС и CDА. Работа dA, которая совершается силами Ампера при иссследуемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) и CDA (dA2), т. е. (2) Силы, которые приложенны к участку CDA контура, образуют острые углы с направлением перемещения, поэтому совершаемая ими работа dA2>0. .Используя (1), находим, эта работа равна произведению силы тока I в нашем контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, который пронизывает контур в его конечном положении. Значит, (3) Силы, которые действуют на участок AВС контура, образуют тупые углы с направлением перемещения, значит совершаемая ими работа dA1<0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, который пронизывает контур в начальном положении. Значит, (4) Подставляя (3) и (4) в (2), найдем выражение для элементарной работы: где dФ2—dФ1=dФ' — изменение магнитного потока сквозь площадь, которая ограничена контуром с током. Таким образом, (5) Проинтегрировав выражение (5), найдем работу, которая совершается силами Ампера, при конечном произвольном перемещении контура в магнитном поле: (6) значит, работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Выражение (6) верно для контура любой формы в произвольном магнитном поле.