- •6. Категориальный аппарат науки.
- •15. Основные черты докласической науки.
- •22. Концепция развития науки постструктурализма.
- •28, 29. Понятие «научно-технической революции». 29. Роль нтр в развитии общества.
- •30. Понятие «метод» и его аспекты
- •44 Методы понимание и объяснение; 66 Основный черты современной методологии.
- •45. Исторический и логический методы.
- •48. Научная проблема: постановка и решение
- •50., 51 Роль фактов в процессе постижения истинны. Факты достоверные и вероятные
- •53. Научное творчество как двигатель развития науки
- •54. Идеалы и нормы научного познания
- •56. Принцип историзма в научном познании
- •57. Проблемная ситуация в научном познании.
- •58. Преемственность в развитии научных знаний.
- •61. Понятие «фальсификация» в науке.
- •62. Проблема классификации наук
- •68. Предмет философии техники
- •76. Формы дщвижения информации.
- •77. Информационные революции.
- •88. Взаимодействие объекта и субъекта в научном познании.
- •89. Специфика социального познания
- •98. Принцип относительности в классической механике
- •101. Модель эволюции Вселенной
- •114. Черная дыра, её происхождение и сущность
- •123. Путь к клонированию. Клонирование: за и против.
- •124. Генная инженерия: за и против.
- •125. Геннокультурная коэволюция
- •128. Философское значение периодического закона Менделеева
- •129. Принцип универсального эволюционизма в науке
- •130. Бионика , её основные проблемы и задачи.
- •131. Принцип целесообразности в живой природе.
- •133. Самоорганизация как основа эволюции
- •134. Виртуальная реальность
- •135. Эвристическое мышление
- •136. Идея космизма в философии
- •137. Биоэтика
- •138. Биотехнология ее основные проблемы и задачи.
- •139, 140. Понятие «живое вещество». Основные принципы эволюции живого вещества в биосфере (по в.И.Вернадскому).
- •141. Значение геологической теории Лайеля в развитии диалектических воззрений на природу
- •142. Геологическая форма движения, её специфика и соотношение с другими формами движения.
- •144. Философское значение идей в. И. Вернадского о биогеохимическом процессе.
- •145. Роль математики в развитии естествознания.
- •146. Роль практики в развитии математики.
- •147. Философское значение неевклидовой геометрии.
- •148. Соотношение философских и математических методов познания
- •149. Понятие многомерного пространства в математике, как философская проблема.
- •150. Географический детерминизм: методологическая оценка.
- •151. География и экология
- •152. Экологический кризис и пути выхода из него.
- •154. Проблема преодоления отсталости.
- •155.Демографическая проблема.
- •156. Проблема продовольственных ресурсов в мире.
- •158. Проблема освоения мирового океана.
- •160. Экологический императив и его значение в науке
98. Принцип относительности в классической механике
Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику. Ее основу составляют три "аксиомы" - три знаменитых закона Ньютона. Уже первый из них, гласящий: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние", говорит об относительности движения и одновременно указывает на существование систем отсчета (они были названы инерциальными), в которых тела, не испытывающие внешних воздействий, движутся "по инерции", не ускоряясь и не замедляясь. Именно такие инерциальные системы имеются ввиду и при формулировке двух остальных законов Ньютона. При переходе из одной инерциальной системы в другую меняются многие величины, характеризующие движение тел, например, их скорости или формы траектории движения, но законы движения, то есть соотношения, связывающие эти величины, остаются постоянными. Чтобы описывать механические движения, то есть изменение положения тел в пространстве, Ньютон четко сформулировал представления о пространстве и времени. Пространство мыслилось как некий "фон", на котором развертывается движение материальных точек. Их положение можно определять, например, с помощью декартовых координат x, у, z, зависящих от времени t. Таким образом принимается, что время абсолютно. Эти формулы получили название преобразований Галилея. По Ньютону, пространство выступает как некая координатная сетка, на которую не влияет материя и ее движение. Время в такой "геометрической" картине мира как бы отсчитывается некими абсолютными часами, ход которых ничто не может ни ускорить, ни замедлить.
99, 100. Спец. теория отн-сти. В конце XIX - начале XX в. считалось, что науч. картина мира практически построена, и если и предстоит какая-либо работа исслед-телям, то это уточн-е нек-ых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались. Например, англ. физик Э. Рсзерфорд (1871-1937) эксперим-но устанав-ет, что атомы имеют ядро, в к-ом сосредоточена вся их масса В 1924 г. фран. физик Луи де Бройль(1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излуч-я, но и других микроч-ц. Но поистине революционный переворот в физич. картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший спец.(1905) и общую (1916) теорию отн-сти. В мех-ке Ньютона сущ-ют 2 абс-ные вел-ны – простр-во и время. Простр-во неизменно и не связано с материей. Время - абсолютно и никак не связано ни с простр-вом, ни с материей, Э. отвергает эти полож-я, считая, что простр-во и время органически связаны с материей и между собой. Тем самым задачей теории отн-сти стан-ся опред-е законов 4-хмерного простр-ва, где 4-ая коорд-та -время. Э., приступая к разраб-ке своей теории, принял в кач-ве исходных два полож-я; ск-сть света в вакууме неизменна и одинакова во всех с-мах, движущихся прямолинейно и равномерно друг отн-но друга, и для всех инерциальных с-м все законы природы одинаковы, а понятие абс-ной ск-ти теряет знач-е, так как нет возмож-сти ее обнаружить. Говоря об открытии спец. теории отн-сти, нельзя не вспомнить нидерландс. физика А. Лоренца {1853-1928), к-ый в 1892 г. вывел урав-е (получившее назв-е «преобраз-я Лоренца»), дающее возмож-сть устан-ть, что при переходе от одной инерциальной с-мы к другой м. изменяться знач-я вр-ни и размеры движущеюся тела в направл-и ск-ти движ-я. А крупнейший франц. мат-к и физик Анри Пуанкаре (1854-1912), к-ый и ввел назв-е «преобраз-е Лоренца», первым начал польз-ться термином «принцип отн-сти», незав-мо от Э-на развил мат-скую ст-ну этого принципа и практически одновр-но с ним показал неразрыв. связь между энергией и массой.
