Diskrmatekz2017
.docДискретная математика
-
Понятие множества. Способы задания множеств. Операции над множествами.
-
Разбиения и покрытия.
-
Булеан. Мощность булеана.
-
Свойства операций над множествами.
-
Прямое произведение множеств. Мощность прямого произведения.
-
Бинарное отношение (БО) на множествах. Способы задания БО. Область определения бинарного отношения. Область значений. Обратное отношение.
-
Произведение отношений. Степень отношений. Обобщенное понятие отношения.
-
Свойства отношений. Примеры.
-
Функциональные отношения.
-
Инъекция, сюръекция, биекция.
-
Отношения эквивалентности.
-
Классы эквивалентности. Разбиение множества на классы эквивалентности. Фактормножество.
-
Отношения порядка. Диаграмма Хассе.
-
Алгебра. Тип алгебры, сигнатура. Примеры.
-
Замыкания и подалгебры.
-
Свойства бинарных операций. Примеры.
-
Комбинаторные задачи. Модели комбинаторных задач.
-
Правила суммы и произведения. Формула включения и исключения.
-
Основные типы наборов комбинаторики: размещения, сочетания, перестановки.
-
Подсчет разбиений в комбинаторике.
-
Биномиальные коэффициенты. Основные тождества.
-
Бином Ньютона. Полиномиальная формула.
-
Граф. Основные понятия.
-
Маршруты на графах. Связный граф. Компоненты связности графа.
-
Типы графов (дерево, лес, полный граф, плоский граф, двудольный граф, однородный граф).
-
Изоморфизм графов и подграфов. Самодополнительный граф.
-
Общая постановка экстремальной задачи на графе. Примеры экстремальных задач.
-
Задача об остовном дереве. Алгоритмы Прима и Краскала.
-
Алгоритм Дийкстра нахождения кратчайшей цепи между парой вершин.
-
Гамильтоновы циклы и контуры. Необходимые и достаточные условия существования гамильтонова цикла в графе. Алгоритм «иди в ближайший».
-
Метод ветвей и границ для решения задачи коммивояжера.
-
Эйлеровы маршруты на графах. Теорема Эйлера.
-
Алгоритм Флери и алгоритм элементарных циклов нахождения эйлерова маршрута на графе.
-
Алгоритм построения оптимального эйлерова мультиграфа.
-
Паросочетания. Задача о нахождении оптимального совершенного паросочетания в графе.
-
Потоки в сетях. Понятие полного потока. Алгоритм решения задачи о максимальном потоке в сети.
-
Алгоритм укладки графа на плоскости.