
- •1. Физиология как наука…
- •2. Внутренняя среда организма…
- •3. Приспособление к среде обитания, как важнейшее условие жизнедеятельности. Срочная и долговременная адаптация.
- •7. Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия.
- •8. Раздражимость и возбудимость…
- •1. Закон силы раздражения:
- •2. Закон длительности раздражения:
- •3. Закон градиента силы:
- •4. Закон "всѐ или ничего":
- •9. Действие постоянного тока…
- •10. Строение биомембран…
- •11. Трансмембранный обмен…
- •12. Ионные каналы…
- •1) Афферентные проводники (дендриты);2) эфферентные проводники (аксон).
- •15. Электрогенез нейронов…
- •16. Нервные проводники…
- •18. Физиологические свойства и функции поперечно-полосатых (скелетных) мышц…
- •20. Функциональная характеристика неисчерченных (гладких) мышц…
- •21. Современная теория мышечного сокращения…
- •23. Системные регуляторные реакции и процессы…
- •25. Рефлекторная регуляция…
- •I. Безусловные рефлексы
- •33. Гуморальная регуляция функций. Межсистемный уровень… Межорганный (межсистемный) уровень регуляции
- •1. Водорастворимые
- •37. Щитовидная железа…
- •39. Эндокринная функция поджелудочной железы…
- •40. Женские половые железы…
- •41. Мужские половые железы…
- •44. Общая характеристика форменных элементов крови и их роль в организме. Гемопоэз, механизм и регуляция образования форменных элементов крови. Лейкоциты…
- •45. Виды иммунитета…
- •1. Вещества, обладающие антибактериальной и антивирусной активностью (лизоцим, интерфероны).
- •2. Система комплимента: система белков, разрушающая целостность мембран клеток.
- •3. Гранулоциты.
- •2. Прикрепление чужеродного объекта к фагоциту.
- •3. Поглощение.
- •4. Лизис.
- •47. Понятие о системах групп крови…
- •1. Сосудистый компонент:
- •51. Физиологические свойства сердечной мышцы…
- •52. Сердце, его гемодинамические функции...
- •53. Оценка нагнетательной (насосной) функции сердца…
- •54. Механические проявления сердечной деятельности… Механические проявления сердечной деятельности:
- •55. Звуковые проявления сердечной деятельности… Звуковые проявления сердечной деятельности 1. Тоны. 2. Шумы.
- •I тон соответствует зубцу r на экг.
- •57. Функциональная классификация кровеносных сосудов…
- •1. Импульсы от рефлексогенных зон:
- •2. Кортикальные влияния.
- •59. Системная гемодинамика…
- •60. Методы оценки основных показателей гемодинамики… Артериальное давление.
- •1. Ультразвуковая допплерография (уздг) позволяет:
- •2. Метод электромагнитной флоурометрии (расходометрия).
- •3. Определение времени кругооборота крови.
- •62. Регуляция системной гемодинамики… Система мониторинга ад и оцк
- •63. Микроциркуляция…
- •64. Особенности гемодинамики в различных сосудистых регионах. Легочное кровообращение… Легочное кровообращение (малый круг кровообращения)
- •2. Важнейшие из гуморальных регуляторов
- •65. Особенности гемодинамики в различных сосудистых регионах. Почечный кровоток… Кровообращение в почках
- •66. Лимфатическая система…
- •67. Регуляция работы сердца… Регуляция деятельности сердца
- •1.Основные рефлексогенные зоны сосудистого русла:
- •2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечнососудистой системы:
- •2. Адреналин.
- •69. Биомеханика спокойного вдоха и выдоха… Биомеханика спокойного вдоха
- •70. Клинико-физиологическая оценка внешнего дыхания. Легочные объемы…
- •71. Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели...
- •72. Газообмен в легких и тканях…
- •73. Транспорт газов кровью…
- •75. Механизмы перестройки внешнего дыхания…
- •1. Роль хеморецепторов 1.1. Влияние углекислого газа (со2)
- •1.2. Значение о2.
- •1.3. Влияние ацидоза и алкалоза
- •2.1. Влияние на рецепторы растяжения в легких.
- •2.4. Раздражение рецепторов скелетных мышц.
- •77. Виды моторики пищеварительного тракта…
- •6. Закрытие и открытие сфинктеров пищеварительной трубки.
- •78. Пищеварение в полости рта… Секреция в ротовой полости
- •79. Пищеварении в желудке… Секреция в желудке
- •81. Роль печени в пищеварении… Желчь
- •84. Принципы регуляции деятельности пищеварительной системы… Общие принципы регуляции пищеварения
- •86. Энергообмен…
- •1. Прямая калориметрия.
- •87. Тепловой обмен… Все живые организмы делятся на:
- •88. Гомеостатические функции почек…
- •89. Выделительная функция почек. Механизмы образования первичной мочи…
- •90. Выделительная функция почек. Образование конечной (вторичной) мочи…
- •2.Определение удельного веса мочи. Удельный вес (или плотность) мочи колеблется в пределах от 1,014 до
- •91. Регуляция функции почек…
- •1. Нервная. 2. Гуморальная (наиболее выраженная).
- •92. Водный баланс… одно-солевой баланс- обеспечивается совокупностью процессов поступления воды и электролитов в
- •1. Водный баланс - равенство объемов выделяющейся из организма и поступающей за сутки воды. 2.
- •100 Г жира - 100 мл н2о,100 г белка - 40 мл н2о,100 г углевод. - 55 мл н2о. Эндогенной н2о мало для нужд организма, особенно для выведения шлаков.
- •1. Внутриклеточное пространство (2/3 общей воды)
- •2.За счет оптимального распределения воды между водными пространствами и секторами организма. Факторы поддержания водного баланса
- •4.Величина активного транспорта, 5.Состояние нейро-эндокринных механизмов регуляции деятельности почек, других органов выделения,
- •6.Питьевое поведение и жажда Водный баланс тесно связан с обменом электролитов.
- •94. Ретикулярная формация… Ретикулярная формация
- •95. Кора больших полушарий…
- •96. Межполушарные взаимоотношения…
- •97. Анализаторы…
- •4. Дифференцировка анализатора по вертикали и горизонтали:
- •2. Проводниковый отдел.
- •98. Зрительный анализатор…
- •99. Слуховой анализатор…
- •101. Условные рефлексы…
- •102. Корковое торможение…
- •103. I и II сигнальные системы…
- •1. Художественный тип - мыслит образами – преобладает чувственное /образное/ восприятие мира. 2.Мыслительный тип - характерно абстрактное мышление
- •1.Восприятие, запечатление и запоминание.
- •107. Функциональная система…
2. Адреналин.
Действует на β1-адренорецепторы. β1-адренорецепторы относятся к метаботропным рецепторам. Воздействие на данную группу рецепторов катехоламинами активирует аденилатциклазу Gas-субъединицей, ассоциированной с данным рецептором.
Как следствие, в цитозоле повышается содержание цАМФ, происходит активация протеинкиназы А, которая ак-тивирует специфическую миозинкиназу, ответственную за фосфорилирование головок тяжелых нитей миозина. Такое воздействие ускоряет сократительные процессы в миокарде и проявляется как положительные ино- и хроно-тропные эффекты.
Тироксин регулирует изоферментный состав миозина в кардиомиоцитах, усиливает сердечные сокращения.
Глюкогон оказывает неспецифическое влияние, за счет активации аденилатциклазы усиливает сердечные сокращения.
Глюкокортикоиды усиливают действие катехоламинов за счет того, что повышают чувствительность адренорецепторов к адреналину.
Вазопрессин. В миокарде имеются V1-рецепторы к вазопрессину, которые ассоциированы с G-белком. При взаимодействии вазопрессина с Vi -рецептором субъединица Gaq активирует фосфолипазу Сβ. Активированная фосфолипаза Сβ катализирует соответствующий субстрат с образованием ИФ3 и ДАГ. ИФ3 активирует кальциевые каналы цитоплазматиче-ской мембраны и мембраны саркоплазматического ретикулума, что приводит к увеличению содержания кальция в цитозоле.
ДАГ параллельно активирует протеинкиназу С. Кальций инициирует мышечное сокращение и генерацию потенциалов, а протеинкиназа С ускоряет фосфорилирование головок миозина, как следствие, вазопрессин
усиливает сердечные сокращения.
Простагландины I2, Е2 ослабляют симпатические влияния на сердце.
Аденозин. Влияет в миокарде на Р1-пуриновые рецепторы, которых достаточно много в области синоатриального узла. Усиливает выходящий калиевый ток, увеличивает поляризацию мембраны кардиомиоцита. За счет этого снижается пейсмекерная активность синоатриального узла, уменьшается возбудимость других отделов проводящей системы сердца.
Ионы калия. Избыток калия вызывает гиперполяризацию мембран кардиомиоцитов и, как следствие, брадикардию. Малые дозы калия увеличивают возбудимость сердечной мышцы.
68. Дыхание… Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей
среды и выделяет углекислый газ.
Этапы дыхания:
Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.
Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких.
Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким.
Диффузия газов в тканях - обмен газов между кровью и тканями.
Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.
Первые 4 этапа изучает физиология, последний, 5-ый - биохимия.
Обеспечение тканей О2 и удаление из организма СО2 зависит от четырех процессов: 1.Вентиляция легких 2.Диффузия газов в альвеолы и ткани из крови и в кровь.
3.Перфузия легких кровью /интенсивность кровотока в легких/. 4.Перфузия тканей кровью
Внешнее дыхание В обеспечении вентиляции легких участвуют три анатомо-физиологических образования:
1) дыхательные пути, обладают небольшой растяжимостью и сжимаемостью, формируют поток воздуха, 2). легочная ткань, обладает высокой растяжимостью и эластичностью/ способность принимать исходное положение после прекращения деформирующей (растягивающей) силы,
3) грудная клетка, пассивная костно–хрящевая основа, ригидная к внешним воздействиям, объединенная в целое связками и дыхательными мышцами, снизу – подвижная диафрагма.
Взаимодействие грудной клетки и легких Грудная клетка и легкие разделены плевральной полостью, которая представляет собой герметичную щель,
содержащую небольшое количество жидкости (5 мл). Объем грудной клетки больше, чем объем легких. Поэтому легкие все время растянуты. Степень растяжения легких определяется транспульмональным давлением
/разница между давлением в легких (альвеолах) и плевральной полости. В области диафрагмы это давление
обозначается как трансдиафрагмальное.
При этом в легких постоянно действует сила, стягивающая их, которая получила название "эластической тяги легких". Она зависит не только от эластичности легких, но, в значительной степени, и от силы поверхностного натяжения слизи, покрывающей альвеолы. Жидкость покрывает огромную поверхность альвеол и тем самым стягивает их. Однако сила поверхностного натяжения альвеол уменьшается за счет вырабатываемого в легких вещества сурфактанта. Благодаря этому легкие становятся более растяжимыми.
Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно - 6 мм рт.ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным - 10 мм рс.ст.
Понятие о пневмотораксе. Попадание воздуха в плевральную полость извне /открытый пневмоторакс /или из полости легких/закрытый пневмоторакс/ уравновешивает давление в плевральной полости с атмосферным и легкое за счет эластической тяги спадается. У человека в связи с особенностями грудной полости происходит спадание одного легкого.
Легкие - максимально приспособлены для газообмена. Наличие газообмена между легкими и кровью постоянно требует обновления воздуха в легких /альвеолярного воздуха/, т.к. газовый состав воздуха будет постоянно изменяться в сторону снижения концентрации О2 и накопления СО2.
Вентиляция легких, т.е. обмен газов между внешней средой и альвеолярным воздухом обеспечивается за счет вдоха /инспирация/ и выдоха /экспирация/, которые характеризуются глубиной вдоха и выдоха и частотой
дыхания.
Выделяют два вида дыхательных движений - спокойный вдох и выдох и форсированный вдох и выдох. Для нормального газообмена в атмосфере с обычным газовым составом здоровому взрослому человеку в спокойном состоянии необходимо 14-18 дыхательных движений в минуту, при длительности вдоха 2 с., объемной
скорости вдоха 250 мл/с.
При вдохе преодолевается ряд сил:
эластическое сопротивление грудной клетки,
эластическое сопротивление внутренних органов, оказывающих давление на диафрагму,
эластическое сопротивление легких,
вязко-динамическое сопротивление всех перечисленных выше тканей,
аэродинамическое сопротивление дыхательных путей,
силу тяжести грудной клетки,
силы инерции перемещаемых масс/органов/
Воздухоносные пути
Верхняя часть воздухоносных путей представлена полостью носа и носоглотки.
В легких воздухоносные пути (ВП) рассматриваются как ряд дихотомических трубок. В легком человека насчитывают 23 генерации бронхиального дерева.
Первые 16 относятся к проводящей зоне трахеобронхиального дерева, 7 - транзиторной и респираторной зоне.
Общая площадь поперечного сечения воздухоносных путей постепенно увеличивается с 2,5 см2 в трахее (0 генерация), на уровне 16 генерации (терминальные бронхиолы) - 180 см", на уровне 18 генерации - около 1000 см2 и далее - более 10 000 см2. Объем до 16 генерации включительно (анатомическое мертвое пространство, не принимает участия в газообмене) - 150 мл. Общий объем 23 генераций + 0 генерации (трахея) составляет 5700 мл (общая емкость легких).
Функции воздухоносных путей (полости носа, носоглотки, респираторной зоны трахеобронхиального дерева)
Кондиционирование воздуха.
Проведение потока воздуха.
Иммунная защита.
Кондиционирование воздуха
Полость носа и носоглотки
Посторонние частицы (более 10-15 мкм) задерживаются волосами преддверия носа и слизистой носовых ходов и носоглотки. Здесь происходит эффективное согревание воздуха за счет хорошего кровоснабжения слизистых оболочек, а так же увлажнение воздуха.
Трахея, бронхи
Происходит дальнейшее увлажнение воздуха. На слизистой этих образований осаждаются частицы менее 10 мкм, которые со слизью перемещаются в сторону входных / выходных ворот дыхательной системы.
Осаждение частиц происходит за счет слизи, которая в виде пленки (толщина 5-10 мкм) располагается на слизистой островками, имеет свойства геля, секретируется преимущественно бокаловидными клетками, за сутки - 100 мл: 90 мл абсорбируется эпителиальными клетками, 10 мл передвигается по поверхности эпителия в глотку -проглатывается или откашливается (мокрота). В мокроте наряду с чужеродными частицами выделяются погибшие клетки слизистой, микроорганизмы.
Секреция слизи находится под холин- и адренергическим контролем: ацетилхолин стимулирует секрецию слизи, а катехоламины ее тормозят. Гистамин, лейкотриены С4, D4> E4 стимулируют отделение слизи.
Трахея и бронхи имеют механизм самоочищения - мукоцилиарный транспорт. Он обеспечивается мерцательными ресничками, которые скоординированно, однонаправленно (по направлению к входным / выходным воротам дыхательной системы) с частотой 900-1200 колебаний в минуту перемещают слизь со скоростью 5-20 мм/мин.
Бронхиолы и альвеолы В них отсутствует система мукоцилиарного транспорта. Однако очищение потока осуществляется
альвеолярными макрофагами, клетками Клара, сурфактантом.
Альвеолярные макрофаги Альвеолярные макрофаги расположены на поверхности альвеол. Они фагоцитируют погибшие клетки,
микроорганизмы, мелкие пылевые частицы, выделяют а-антитрипсин, который предохраняет альвеолы от действия протеаз. Альвеолярные макрофаги способны мигрировать вверх по ВП.
Клетки Клара
Участвуют в инактивации токсинов за счет цитохрома Р450, в образовании сурфактанта.
Сурфактант
предотвращает контакт эндотелия альвеол с инородными частицами, микробами.
обволакиваемые сурфактантом чужеродные частицы фагоцитируются альвеолярными макрофагами и транспортируются в вышележащие отделы ВП
опсонизирует микробные антигены и тем самым ускоряет их фагоцитоз альвеолярными макрофагами.