Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка 1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
693.29 Кб
Скачать

Вариант №16

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ; б) , .

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Вариант №17

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ; б) , .

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Вариант №18

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ; б) , .

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Вариант №19

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ; б) , .

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Вариант №20

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ; б) , .

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Индивидуальная работа №4.

Вариант №1

Задание 1. Найти все лорановские разложения данной функции по степеням . Указать главную и правильную части ряда.

= , ;

Задание 2. Для функции найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

= ;

Задание 3. Вычислить интеграл от функции комплексного переменного:

;

Задание 4. Вычислить интегралы, используя теорему Коши о вычетах.

а) ; б) .

Задание 5. Вычислить интегралы с помощью вычетов.

  1. 2.