- •1.Место генетики в системе биологических наук.
- •2.Роль отечественных ученых в развитии генетики.
- •3.Генетика как теоретическая основа селекции и племенного дела с/х животных, ветеринарии и медицины.
- •4. Достижения современной генетики и пути её дальнейшего развития
- •5.Современное состояние и проблемы генетики?????????????????????????????????????????????????????????????????????????????????????????????????????????????
- •6.Методы изучения генетики:
- •7.Основные этапы развития генетики
- •8.Коэффициент корреляции, методы вычисления
- •9.Понятие о коэффициенте наследуемости и методы вычисления
- •10. Методика вычисления средней арифметической
- •11.Вычисление статистических средних величин и их применение для характеристики племенных показателей.
- •12 Практическое значение биометрических параметров для селекционной работы при прогнозировании эффективности отбора
- •13. Понятие о коэффициенте наследуемости и методы вычисления
- •14.Понятие о коэффициенте инбридинга и методы вычисления
- •15.Особенности экспериментального метода Менделя
- •16. Генетический код и его свойства
- •17.Понятие о гене как единице наследования
- •18.Инбридинг его биологические особенности
- •19.Митоз
- •20.Мейоз
- •21.Генетика иммунитета, аномалий и болезней.
- •22.Правило наследования признаков.
- •23. Хромосомная теория наследственности моргана.
- •24. Значение закона моргана в практике животноводства
- •25.Значение нуклеиновых кислот для биологического синтеза белка.
- •26. Основные виды днк и рнк, локализация их в клетке.
- •27. Нуклеиновые кислоты, доказательства их роли в наследственности.
- •29. Генетические основы индивидуального развития.
- •31.Молекулярные основы наследственности
- •32. Классификация мутаций
- •33.Эволюционное значение кроссинговера.
- •34. Партеногенез,гиногенез и андрогенез,их значение для понимания наследственности и перспектива практического использования
- •36.Роль г. Де Фриза и с.И. Коржинского в развитии теории мутации
- •37 Роль генетики в формировании материалистического мировоззрения специалистов сельскохозяйственного производства
- •38 Метод коэффициентов путей райта
- •40.Интерсексуальность. Фримартинизм,гермафродитизм,их теоретическое и практическое значение
- •41 Значение работ Менделя для развития генетики
- •43. Мутации
- •44.Гомогаметный и гетерогаметный пол.
- •45.Гибридологический анализ наследования признаков одноплодных животных
- •47 .Закон чистоты гамет
- •48 Генетические карты хромосом
- •49 .Сцепленное наследование
- •50.Виды доминирования
10. Методика вычисления средней арифметической
Средняя арифметическая величина выборки
характеризует средний уровень значений изучаемой случайной величины в наблюдавшихся случаях и вычисляется путем деления суммы отдельных величин исследуемого признака на общее число наблюдений:
где
-
значение конкретного показателя,
-
нак
суммирования,
-
число показателей (случаев).
Практическое задание: рассчитать среднее арифметическое значение измерений силы кисти спортсмена по следующим результатам: 46, 50, 59, 60, 55, 49 кг.
Среднее арифметическое дает возможность:
1) охарактеризовать исследуемую совокупность одним числом;
2) сравнить отдельные величины со средним арифметическим;
3) определить тенденцию развития какого-либо явления;
4) сравнить разные совокупности;
5) вычислить другие статистические показатели, так как многие статистические вычисления опираются на среднее арифметическое.
Однако одно только среднее арифметическое не дает возможности глубоко анализировать сущность того или иного явления и их взаимные различия!
Вычисление стандартной ошибки средней арифметической
Выборка результатов (какой бы она не была большой) не совпадает по абсолютной величине с соответствующими генеральными параметрами. Например, результаты физической подготовленности мастеров спорта одной спортивной школы не могут точно характеризовать результаты всех мастеров спорта страны. Величина отклонения выборочной средней от ее генерального параметра называется статистической стандартной ошибкой выборочного среднего арифметического. Иногда этот показатель называется просто ошибкой средней.
Этот
показатель обозначается символом
и
рассчитывается по формулам:
где
-
среднее квадратическое отклонение
выборочной совокупности;
- объем выборки (число измерений или испытуемых).
Значение
стандартной ошибки средней арифметической
(
указывает,
насколько изменится среднее значение,
если его перенести на всю генеральную
совокупность.
11.Вычисление статистических средних величин и их применение для характеристики племенных показателей.
Средняя величина - это обобщающий показатель статистической совокупности, который погашает индивидуальные различия значений статистических величин, позволяя сравнивать разные совокупности между собой.Существует 2 класса средних величин: степенные и структурные.К структурным средним относятся мода и медиана, но наиболее часто применяются степенные средниеразличных видов.Степенные средние величиныСтепенные средние могут быть простыми и взвешенными.Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле:
Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:
где X – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят следующие виды степенных средних величин: при m = -1 средняя гармоническая; при m = 0 средняя геометрическая; при m = 1 средняя арифметическая; при m = 2 средняя квадратическая; при m = 3 средняя кубическая.
Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.Средняя квадратическая.Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений.
