Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-50genetika_1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
279.19 Кб
Скачать

3.Генетика как теоретическая основа селекции и племенного дела с/х животных, ветеринарии и медицины.

Теоретической основой Селекции является генетика, основные положения которой стали фундаментом для селекционной практики. Эволюционная теория Ч. Дарвина, законы Г. Менделя, учение о чистых линиях и мутациях позволили селекционерам разработать методы сознательного управления наследственностью растительных и животных организмов. В основе индивидуального отбора растений и животных лежат генетические представления о чистых линиях, гомо- и гетерозиготности, о нетождественности фенотипа и генотипа. Закономерности независимого наследования и свободного комбинирования признаков в потомстве послужили теоретической основой гибридизации и скрещивания, являющихся вместе с отбором основными методами селекции. Дальнейшее развитие генетики привело к созданию гетерозисных гибридов кукурузы, сорго, огурца, томата, свёклы, пшеницы, помесей крупного рогатого скота, птицы, к использованию в селекции растений цитоплазматической мужской стерильности, к получению искусственных мутаций и полиплоидных форм. Большую роль в селекционной практике играет гибридологический анализ. В свою очередь, генетика черпает в Селекция данные для обобщения и благодаря им развивает свои теории. С развитием генетики стало возможным применение её методов в исследовании неизлечимых ранее болезней, патологий и т.д. Что начало привлекать немалый интерес со стороны ученых, работающих в области медицины. Известно несколько тысяч генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики. Исторически интерес медицины к генетике формировался первоначально в связи с наблюдениями за наследуемыми патологическими (болезненными) признаками. Во второй половине 19-го века английский биолог Ф.Гальтон выделил как самостоятельный предмет исследования «наследственность человека». Он же предложил ряд специальных методов генетического анализа: генеалогический, близнецовый, статистический. Изучение закономерностей наследования нормальных и патологических признаков и сейчас занимает ведущее место в генетике человека.

4. Достижения современной генетики и пути её дальнейшего развития

Достижения современной генетики, расшифровка анатомии генома человека, расширение объема клонирования генов показали, насколько сложна организация наследственного аппарата в нормально функционирующей клетке, и существуют еще большие трудности в оценке деятельности генома в условиях патологии. Происходит процесс пересмотра всего класса наследственных заболеваний. На основе разработки концепции о моногенных болезнях стало очевидным существование выраженной аллельной и неаллельной генетической гетерогенности генетически детерминированной патологии. На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина. Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим. Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы, изучать наследственные болезни, проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний. Селекционерами России достигнуты значимые успехи в создании новых и улучшении существующих пород животных. Так, костромская порода крупного рогатого скота отличается высокой молочной продуктивностью — более 10 тыс. кг молока в год. Сибирский тип российской мясо-шерстной породы овец характеризуется высокой мясной и шерстной продуктивностью. Средняя масса племенных баранов составляет 110—130 кг, а средний настриг шерсти в чистом волокне — 6—8 кг. Большие достижения имеются также в селекции свиней, лошадей, кур и многих других животных. откорме при среднесуточном приросте свыше 700 г, а приплод составляет 9—12. Начавшись в 1900 г. с переоткрытия законов Менделя, генетика в XX в. прошла стремительный путь развития от формальной идентификации генов (так были в начале века названы менделевскис «факторы» наследственности) с определенными участками ядерных хромосом до выяснения их подлинной химической природы (1944) в форме особого класса химических биополимеров — дезоксирибонуклеиновых кислот (ДНК); от раскрытия структуры ДНК в виде знаменитой теперь и известной всем двойной спирали (1953) до расшифровки кода наследственной информации (1961); и от открытия методов быстрого прочтения,определения (или, как говорят ученые, — секвенирования) длинных нуклеотидных последовательностей ДНК (1977) до расшифровки (точнее, — секвенирования) генома человека (2000).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]