- •1.Место генетики в системе биологических наук.
- •2.Роль отечественных ученых в развитии генетики.
- •3.Генетика как теоретическая основа селекции и племенного дела с/х животных, ветеринарии и медицины.
- •4. Достижения современной генетики и пути её дальнейшего развития
- •5.Современное состояние и проблемы генетики?????????????????????????????????????????????????????????????????????????????????????????????????????????????
- •6.Методы изучения генетики:
- •7.Основные этапы развития генетики
- •8.Коэффициент корреляции, методы вычисления
- •9.Понятие о коэффициенте наследуемости и методы вычисления
- •10. Методика вычисления средней арифметической
- •11.Вычисление статистических средних величин и их применение для характеристики племенных показателей.
- •12 Практическое значение биометрических параметров для селекционной работы при прогнозировании эффективности отбора
- •13. Понятие о коэффициенте наследуемости и методы вычисления
- •14.Понятие о коэффициенте инбридинга и методы вычисления
- •15.Особенности экспериментального метода Менделя
- •16. Генетический код и его свойства
- •17.Понятие о гене как единице наследования
- •18.Инбридинг его биологические особенности
- •19.Митоз
- •20.Мейоз
- •21.Генетика иммунитета, аномалий и болезней.
- •22.Правило наследования признаков.
- •23. Хромосомная теория наследственности моргана.
- •24. Значение закона моргана в практике животноводства
- •25.Значение нуклеиновых кислот для биологического синтеза белка.
- •26. Основные виды днк и рнк, локализация их в клетке.
- •27. Нуклеиновые кислоты, доказательства их роли в наследственности.
- •29. Генетические основы индивидуального развития.
- •31.Молекулярные основы наследственности
- •32. Классификация мутаций
- •33.Эволюционное значение кроссинговера.
- •34. Партеногенез,гиногенез и андрогенез,их значение для понимания наследственности и перспектива практического использования
- •36.Роль г. Де Фриза и с.И. Коржинского в развитии теории мутации
- •37 Роль генетики в формировании материалистического мировоззрения специалистов сельскохозяйственного производства
- •38 Метод коэффициентов путей райта
- •40.Интерсексуальность. Фримартинизм,гермафродитизм,их теоретическое и практическое значение
- •41 Значение работ Менделя для развития генетики
- •43. Мутации
- •44.Гомогаметный и гетерогаметный пол.
- •45.Гибридологический анализ наследования признаков одноплодных животных
- •47 .Закон чистоты гамет
- •48 Генетические карты хромосом
- •49 .Сцепленное наследование
- •50.Виды доминирования
23. Хромосомная теория наследственности моргана.
теория, согласно которой Хромосомы, заключённые в ядре клетки, являются носителями Генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Х. т. н. возникла в начале 20 в. на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа. Т. Х. Моргану, который заметил, что передача некоторых генов (например, гена, обусловливающего белоглазие у самок дрозофилы при скрещивании с красноглазыми самцами) связана с передачей половой Х-хромосомы, т. е. что наследуются признаки, сцепленные с полом (у человека известно несколько десятков таких признаков, в том числе некоторые наследственные дефекты - дальтонизм, гемофилия и др.).С развитием Х. т. н. было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов; признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые, рекомбинантные, их сочетания) было подробно исследовано Морганом и его сотрудниками и послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящиеся у родителей в сочетаниях . В 30-х гг. Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации.Х. т. н. развивается в направлении углубления знаний об универсальных носителях наследственной информации - молекулах дезоксирибонуклеиновой кислоты (ДНК). Установлено, что непрерывная последовательность пуриновых и пиримидиновых оснований вдоль цепи ДНК образует гены, межгенные интервалы, знаки начала и конца считывания информации в пределах гена; определяет наследственный характер синтеза специфических белков клетки и, следовательно, наследственный характер обмена веществ.
24. Значение закона моргана в практике животноводства
25.Значение нуклеиновых кислот для биологического синтеза белка.
Различают два типа нуклеиновых кислот - рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). РНК имеет две формы: транспортную (тРНК) и рибосомную (рРНК). Они имеют довольно сложную структуру. Третья форма - это информационная, или матричная, РНК (мРНК). Все эти формы участвуют в синтезе белка. МРНК - это одноцепочная молекула, образующаяся на одной из цепей ДНК в процессе транскрипции. При синтезе мРНК копируется только одна цепь молекулы ДНК. Нуклеотиды, из которых синтезируются мРНК, присоединяются к ДНК в соответствии с правилами спаривания оснований и при участии фермента РНК - полимеразы. Последовательность оснований в мРНК представляет собой комплиментарную копию цепи ДНК - матрицу. Рибосомная РНК кодируется особыми генами, находящимися в нескольких хромосомах. Последовательность в рРНК сходная у всех организмов. Она содержится в цитоплазме, где образует вместе с белковыми молекулами клеточные органеллы, называемые рибосомами. На рибосомах происходит синтез белка. Здесь “код”, заключенный в мРНК, транслируется в аминокислотную последовательность строящейся полипептидной цепи. Группы, образуемые рибосомами - полирибосомы (полисомы) - делают возможным одновременный синтез нескольких молекул полипептидов при участии одной молекулы мРНК. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на их жизнеспособность.
