Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 винокуров.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
277.5 Кб
Скачать

5. Литровая мощность и методы форсирования двигателей.

Литровой мощностью называют номинальную эффективную мощность, снимаемую с единицы рабочего объема двигателя

Nл=Ne/iVh =pen /(30г)

Чем выше литровая мощность, тем меньше рабочий объем и соответственно меньшие габариты и массу имеет двигатель при одинаковой номинальной мощности.

По литровой мощности оценивают степень форсированности. Двигатели, имеющие высокие значения Na, называют фор­сированными.

Комплекс технических мероприятий, способствующих повы­шению литровой мощности, называют форсированием двигателя.

Возможные способы форсирования двигателей следуют из выражения (1.6); МЛ увеличивается с увеличением номинальной частоты вращения и, среднего эффективного давления рс или при применении двухтактного рабочего процесса.Увеличение литровой мощности посредством повышения и широко используется в карбюраторных двигателях, для со­временных моделей которых п достигает 6500 мин"1 и выше.

Дизели грузовых автомобилей, как правило, имеют номи­нальную частоту вращения, не превышающую 2600 мин.По этой причине литровая мощность дизелей без наддува находится в пределах от 12 до 15 кВт/л и существенно уступает аналогичному показателю карбюраторных двигателей, имеющих ЛГЛ*=2О...5О кВт/л.Однако в настоящее время в ряде конструкций дизелей лег­ковых автомобилей трудности форсирования их по частоте вра­щения удается преодолеть. Появляется все большее количество дизелей с номинальной частотой вращения п=4500...5500 мин"1 и литровой мощностью до 20 кВт/л.Для дизелей форсирование по частоте вращения менее харак­терно, чем для двигателей карбюраторных, для которых этот способ повышения литровой мощности является одним из основ­ных.Как следует из анализа зависимости (1.6), при переходе Одним из недоста­тков такой системы наддува является суще­ственное снижение эко­номичности двигателя, обусловленное необхо­димостью затрат энер­гии на привод компрес­сора.Наибольшее рас­пространение в практи­ке современного двига-телестроения получил газотурбинный наддув, схема которого приве­дена на рис. 1.10.центробежного компрессора 1 используется энергия ОГ, срабаты­ваемая в газовой турбине 2, конструктивно объединенной с комп­рессором в единый агрегат, который называют турбокомпрес­сором (ТК).Поскольку при газотурбинном наддуве отсутствует механи­ческая связь агрегата наддува с коленчатым валом двигателя, применение ТК заметно ухудшает тяговые характеристики и при­емистость двигателя. Это связано с инерционностью системы роторов ТК, а также с уменьшением энергии отработавших газов при малых нагрузках, в связи с чем, особенно в начале разгона, не обеспечивается подача в цилиндр нужного количества свежего заряда. Для преодоления этих недостатков нередко возникает необходимость использования комбинированного наддува. Систе­ма комбинированного наддува выполняется в различных конст­руктивных вариантах и обычно представляет собой определен­ные комбинации наддува с приводным компрессором и газотур­бинного наддува.Для повышения плотности свежего заряда, подаваемого в цилиндры двигателя, в ряде случаев используются колебатель­ные явления в системах газообмена (пульсации РТ в системе впуска и выпуска), являющиеся результатом цикличности следо­вания процессов газообмена в цилиндре.Если, например, задать впускному патрубку такие конструк­тивные параметры (в основном длину и площадь проходного сечения), чтобы перед закрытием впускного клапана около него была волна сжатия, то масса поступающего в цилиндр заряда увеличивается.Аналогичный эффект можно получить, «настроив» выпуск­ной трубопровод так, чтобы при открытом выпускном клапане вблизи него была волна разрежения. В результате этого улучшит-ся очистка цилиндров и в него поступит большее количество свежего заряда.При правильном выборе геометрических параметров систем газообмена в отдельных случаях с помощью динамического над­дува становится возможным увеличить эффективную мощность двигателя на 15...25%.

При использовании наддува увеличивается механическая и тепловая напряженность элементов, формирующих камеру сго­рания, что является одним из основных факторов, ограничива­ющих возможное увеличение плотности свежего заряда, поступа­ющего в цилиндр. Поэтому при конструировании двигателей с наддувом и выборе величины давления на выходе из компрес­сора р'х необходимо учитывать возможные последствия роста механических и тепловых нагрузок на его элементы.По величине создаваемого на входе в цилиндр дизеля давле­ния рх (или степени повышения давления itt=pJPo) различают наддув низкий ях<1,5, средний яж>1,5...2,0 и высокий я,>2,0. При этом эффективная мощность двигателя увеличивается соот­ветственно на 20...30, 40...50 и более 50%.Применение наддува в двигателях с искровым зажиганием требует принятия специальных мер по предотвращению наруше­ния процесса сгорания, называемого детонацией (см. п.3.3.1 и 3.4.4). Это обстоятельство, а также более высокая тепловая напряженность лопаток турбины из-за большей температуры ОГ существенно усложняют практические возможности использова­ния наддува в двигателях данного типа.