Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ по математике для СРВ ЗФО.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
581.64 Кб
Скачать

Тема 2. Производная

Производной от функции называется конечный предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю:

, или .

Геометрически производная представляет собой угловой коэффициент касательной к графику функции в точке х, то есть .

Производная есть скорость изменения функции в точке х.

Отыскание производной называется дифференцированием функции.

Формулы дифференцирования элементарных функций:

ТЕМА 3. Основные правила дифференцирования

Пусть , тогда:

7) Если , то есть , где и имеют производные, то (правило дифференцирования сложной функции).

Примеры:

ТЕМА 4. Логарифмическое дифференцирование

Если требуется найти из уравнения , то можно:

а) логарифмировать обе части уравнения

;

б) дифференцировать обе части полученного равенства, где есть сложная функция от х,

.

в) заменить его выражением через х

.

Пример:

ТЕМА 5. Дифференцирование неявных функций

Пусть уравнение определяет как неявную функцию от х.

а) продифференцируем по х обе части уравнения , получим уравнение первой степени относительно ;

б) из полученного уравнения выразим .

Пример: .

ТЕМА 6. Дифференцирование функций, заданных

Параметрически

Пусть функция задана параметрическими уравнениями ,

тогда , или

Пример:

ТЕМА 7. Приложение производной

Пусть и , где -угол, образованный с положительным направлением оси ОХ касательной к кривой в точке с абсциссой .

Уравнение касательной к кривой в точке имеет вид:

, где -производная при .

Нормалью к кривой называется прямая, перпендикулярная касательной и проходящая через точку касания.

Уравнение нормали имеет вид

.

Угол между двумя кривыми и в точке их пересечения называется угол между касательными к этим кривым в точке . Этот угол находится по формуле

.

Тема 8. Производные высших порядков

Если есть производная от функции , то производная от называется второй производной, или производной второго порядка и обозначается , или , или .

Аналогично определяются производные любого порядка:производная третьего порядка ; производная n-го порядка:

.

Для произведения двух функций можно получить производную любого n-го порядка, пользуясь формулой Лейбница:

Пример:

1)

Тема 9. Вторая производная от неявной функции

-уравнение определяет , как неявную функцию от х.

а) определим ;

б) продифференцируем по х левую и правую части равенства ,

причем, дифференцируя функцию по переменной х, помним, что есть функция от х:

;

в) заменяя через , получим: и т.д.

Пример:

Тема 10. Производные от функций, заданных параметрически

Пример:

Найти если .

Тема 11. Дифференциалы первого и высших порядков

Дифференциалом первого порядка функции называется главная, линейная относительно аргумента часть . Дифференциалом аргумента называется приращение аргумента: .

Дифференциал функции равен произведению ее производной на дифференциал аргумента:

.

Основные свойства дифференциала:

где .

Если приращение аргумента мало по абсолютной величине, то и .

Таким образом, дифференциал функции может применяться для приближенных вычислений.

Дифференциалом второго порядка функции называется дифференциал от дифференциала первого порядка: .

Аналогично: .

.

Если и - независимая переменная, то дифференциалы высших порядков вычисляются по формулам

.

Пример.

Найти дифференциалы первого и второго порядков функции