- •1. В чем заключается физический смысл компенсации реактивной мощности ? Докажите экономическую целесообразность компенсации реактивной мощности.
- •2. Вид и система освещения , выбор системы освещения, выбор освещенности и типа источников света
- •3. Виды и назначение электрических аппаратов, общие требования для всех электрических аппаратов, защитные оболочки электрических аппаратов.
- •4. Выключатели нагрузки. Назначение. Устройство. Способы гашения дуги.
- •5. Высоковольтные вакуумные и элегазовые выключатели, назначение, устройство и способы гашения дуги.
- •6. Высоковольтные предохранители, назначение, устройство и принципы гашения дуги.
- •9. Дуговые печи прямого действия. Назначение, принцип работы и конструкция.
- •10. Защитные меры электробезопасности. Что означает термин «заземление»? Что такое защитное и рабочее заземление? Чему равно Rз.У. В сетях с заземленной нейтралью выше 1кВ?
- •11. Кабельные линии, конструкция и способы прокладки кабельных линий.
- •12. Классы защиты светильников от поражения электрическим током
- •13 Классы светораспределения осветительных приборов, … ?
- •14 Конструктивное выполнение электрических сетей, назначение и обл. Прим.
- •15. Конструкция и принцип работы установок стыковой контактной сварки.
- •16. Конструкция и принцип работы установок точечной контактной сварки.
- •17) Конструкция и принцип работы установок шовной контактной сварки
- •18) Люминесцентная лампа, устройство, принцип действия и основные характеристики.
- •19) Металлогалогеновые лампы,устройство, принцип действия, применение.
- •20 Назначение и классификация электрических контактов. Материалы контактных соединений.
- •21. Назначение, основные параметры и условное обозначение на схемах трансформаторов тока (т.Т.) и трансформаторов напряжения (т.Н.).
- •23) Огнеупорные, теплоизоляционные и жароупорные материалы
- •24 Основные световые величины
- •25. Основные требования, предъявляемые к предохранителям, устройство и особенности выбора плавких вставок в сетях 380-500 в.
- •26. Переходное сопротивление контакта. Зависимость переходного сопротивления от состояния контактных поверхностей и температуры.
- •27. Перечислите основные показатели качества электрической энергии для трехфазных сетей переменного тока в соответствии с гост, основные понятия, формулы и определения показателей качества.
- •29. Принципы компоновки и размещения трансформаторных и распределительных подстанций.
- •31. Режимы нейтралей установок до и выше 1000 в, объяснить необходимость применения и принцип работы.
- •32. Ртутная газоразрядная лампа, устройство, принцип действия, применение основные характеристики.
- •34. Установки диэлектрического нагрева, типы и назначение. Виды поляризации.
- •35) Установки индукционного нагрева, область их применения, основные типы и принцип работы.
- •Устройства: -Генераторы индукционных токов
- •Генераторы индукционных токов
- •Индукционные плиты
- •36 Устройство галогенных ламп накаливания, физические процессы, протекающие в галогенных лампах
- •37. Характеристики промышленных потребителей электроэнергии. Дать объснение каждому параметру.
- •38) Электрическая дуга
- •39. Электрические печи сопротивления непрерывного действия.
- •40. Электрические печи сопротивления периодического действия, конструкция, принцип работы и квалификация.
27. Перечислите основные показатели качества электрической энергии для трехфазных сетей переменного тока в соответствии с гост, основные понятия, формулы и определения показателей качества.
Согласно ГОСТ 13109-97 показателями качества электроэнергии являются:
Отклонение напряжения, Колебания напряжения, Провалы напряжения, Временное перенапряжение, Несимметрия напряжения в трехфазной системе, Несинусоидалность формы кривой напряжения, Отклонение частоты, Импульсное напряжение
Отклонение напряжения – отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.
Отклонение
напряжения обусловлено изменением
потерь напряжения (см. гл. 12), вызываемых
изменением мощностей нагрузок. Отклонение
напряжения нормируется на выводах
приемников электрической энергии:
Колебания напряжения характеризуются размахом изменения напряжения δU1, , частотой повторения изменений напряжения FδUt, интервалом между изменениями напряжения ∆ti, ti + 1 , дозой фликера Рt.
Источниками колебаний напряжения являются потребители электроэнергии с резкопеременным графиком потребления мощности (особенно реактивной). К ним относятся: дуговые сталеплавильные печи, электросварка, поршневые компрессоры и ряд других.
Если огибающая действующих значений напряжения имеет горизонтальные участки (при спокойном графике нагрузки), то размах изменения напряжения определяется как разность между соседними экстремумом (максимумом или минимумом ) и горизонтальным участком или как разность между соседними горизонтальными участками
Ф л и к е р (мерцание) - субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники.
Доза фликера - мера восприимчивости человека к воздействию фликера за установленный промежуток времени, т. е. интегральная характеристика колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раздражение мерцаниями (миганиями) светового потока.
Дозу фликера напряжения в процентах в квадрате вычисляют по выражению
Провал напряжения - внезапное значительное снижение напряжения в точке электрической сети ниже 0,9Uном, которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд (рис. 3).
Рис. 3. Провал напряжения
Временное перенапряжение - повышение напряжения в точке электрической сети выше 1,1Uном продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.
Несимметрия трехфазной системы напряжений характеризуется коэффициентами несимметрии обратной последовательности, и нулевой последовательности, которые представляют собой отношение действующего значения напряжения соответственно обратной и нулевой последовательности к действующему значению напряжения прямой последовательности (к номинальному напряжению):
U2(1) и U01) дейвующие значения напряжения соответственно обратной и нулевой последовательностей основной частоты трехфазной системы напряжений, В и кВ.
Несинусоидальность напряжения появляется потому, что в кривой напряжения, помимо гармоники основной частоты , имеют место гармоники других высших частот, кратных основной частоте (п = 2, 3, 4,..., и т.д.). Гармоники обычно определяются разложением кривой фактического напряжения в ряд Фурье.
Причиной возникновения несинусоидальности напряжения является наличие потребителей электроэнергии с нелинейной вольт-амперной характеристикой.
Несинусоидальность напряжения характеризуется следующими показателями:
коэффициентом искажения синусоидальности кривой напряжения;
коэффициентом «-и гармонической составляющей напряжения.
Коэффициент искажения синусоидальности кривой напряжения Кu, %, является отношением суммарного действующего значения всех высших гармоник к действующему значению напряжения основной гармоники, причем п ≥ 2
При определении коэффициента искажения синусоидальности кривой напряжения допускается не учитывать гармонические составляющие порядка и > 40 или действующее значение которых менее 0,3 от U(1).
Предельно допустимое значение коэффициента n-й гармонической составляющей напряжения вычисляют по
(8)
где KU(n)норм - нормально допустимое значение коэффициента п-й гармонической составляющей напряжения.
Отклонение частоты в электрической системе, Гц, характеризует разность между действительным и номинальным значениями частоты переменного тока в системе электроснабжения и определяется по выражению
δf = f - fном (1)
Допустимые нормы по отклонению частоты составляют
δfнорм= ± 0,2 Гц, δfпред =± 0,4 Гц
Импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд (т. е. меньше полупериода) (рис. 4).
Рис. 4. Импульс напряжения
Импульсное напряжение характеризуют следующие величины:
амплитуда импульса Uимп - максимальное мгновенное значение импульса напряжения;
длительность импульса - интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня; часто длительность импульса оценивается по уровню 0,5 его амплитуды ∆tимп о,5.
Основным способом защиты от импульсных напряжений является использование ограничителей перенапряжения (ОПН) на основе металлооксидных соединений.
28. Потребители реактивной мощности на предприятиях, основные способы снижения потребления реактивной мощности на предприятиях без применения дополнительных устройств. Потребление реактивной мощности: Как известно реактивная мощность может иметь индуктивный или емкостный характер нагрузки. Считается, что если ток отстает по фазе от напряжения, то нагрузка имеет индуктивный характер, а реактивная мощность потребляется и имеет положительный знак (+). В элементах сети имеют место потери реактивной мощности, которые могут быть соизмеримы с реактивной мощностью, потребляемой приемниками электроэнергии. Основными потребителями реактивной мощности на промышленных предприятиях являются АД (60-65% от общего потребления), трансформаторы (20-25%), вентильные преобразователи, реакторы, воздушные и кабельные электросети и прочие приемники (10%). Для сравнения: активная мощность Р так же, как и реактивная потребляется приемниками и теряется в элементах сети и электрооборудования. Мероприятия по уменьшению потребления реактивных мощностей. Снижение потребления реактивной мощности самими электроприемниками и повышение естественного коэффициента мощности может быть достигнуто следующими мероприятиями: а) повышением загрузки технологических агрегатов, упорядочением технологического процесса, повышением загрузки и коэффициента загрузки электродвигателей; б) снижением напряжения питания асинхронных двигателей, загруженных не выше, чем на 45%, путем переключения схемы обмоток с на . При этом вращающий момент и активная мощность электродвигателя уменьшаются в 3 раза, загрузка двигателя и его коэффициент мощности повышаются, а потребление реактивной мощности снижается. Такое переключение возможно при напряжении обмотки двигателя 660/380 В и напряжении сети 380 В. в) установкой ограничителей холостого хода асинхронных электродвигателей и сварочных трансформаторов; г) отключением цеховых трансформаторов, загруженных менее 30%, с переводом нагрузки на другие трансформаторы; д) заменой систематически недогруженных асинхронных двигателей со средним Кз < 45% на двигатели меньшей мощности; е) заменой изношенных асинхронных двигателей синхронными (вместо QАД появляется -QСД). Для вновь устанавливаемых механизмов, не требующих регулирования скорости и работающих в продолжительном режиме (насосы, компрессоры, вентиляторы), рекомендуется применять синхронные двигатели.
