- •Технология товаров Курс лекций
- •Технология товаров
- •400010, Г. Волгоград, ул. Качинцев, 63. Содержание
- •Введение
- •Основные составные вещества пищевых продуктов и их роль в питании человека
- •Углеводы
- •Витамины
- •1.5. Минеральные вещества
- •1.5.1. Макроэлементы
- •1.5.2. Микроэлементы
- •1.5.3. Ультрамикроэлементы
- •2. Общая характеристика пищевого сырья
- •2.1. Классификация пищевого сырья, используемого в пищевых отраслях
- •2.2. Краткая характеристика сырья растительного и животного происхождения
- •2.3. Продукты клеточного строения
- •2.3.1. Растительные ткани
- •2.3.2. Ткани животных и рыб
- •2.3.3. Влияние клеточной структуры на свойства продукта
- •2.3.4. Жидкие пищевые продукты
- •2.3.5. Желеобразные пищевые продукты
- •2.3.6. Пастообразные пищевые продукты
- •2.3.7. Жирные пищевые продукты
- •2.3.8. Стекловидные пищевые продукты
- •3. Химические процессы
- •3.1. Факторы, влияющие на скорость химических реакций
- •3.2. Сущность отдельных химических процессов и их роль в пищевой промышленности
- •4. Биохимические процессы
- •4.1. Факторы, влияющие на скорость биохимических процессов
- •4.2. Строение, свойства и классификация ферментов
- •4.3. Ферментные препараты
- •4.4. Роль ферментов при производстве и хранении пищевых продуктов
- •5. Микробиологические процессы
- •5.1. Основные группы микроорганизмов, используемые в пищевой промышленности
- •5.2. Получение белковых пищевых продуктов
- •5.3. Типы энергетического обмена у микроорганизмов
- •5.4. Необходимые условия для регулирования обмена веществ микроорганизмов
- •5.5. Производственная инфекция и дезинфекция
- •6. Физические методы переработки сырья при производстве пищевых продуктов
- •6.1. Измельчение
- •6.2. Гомогенизация
- •6.3. Сортирование
- •6.4. Обработка пищевых продуктов давлением (прессование)
- •6.4.1. Отделение жидкости от твердого тела
- •6.5. Перемешивание
- •6.6. Разделение неоднородных систем
- •6.6.1. Осаждение (отстаивание)
- •6.6.2. Фильтрация
- •7. Электрофизические методы обработки пищевых продуктов
- •7.1. Обработка пищевых продуктов инфракрасным излучением
- •7.3. Электроконтактные методы обработки пищевых продуктов
- •7.4. Обработка пищевых продуктов в электростатическом поле
- •7.5. Электрофлотация
- •8. Теплофизические методы обработки пищевых продуктов
- •8.1. Классификация способов тепловой обработки
- •8.2. Основные способы тепловой обработки
- •8.2.1. Влажные способы тепловой обработки
- •8.2.2. Сухие способы тепловой обработки
- •8.2.3. Комбинированные способы тепловой обработки
- •8.3. Вспомогательные способы тепловой обработки
- •8.3.1. Влажные способы вспомогательной тепловой обработки
- •8.3.2. Сухие способы вспомогательной тепловой обработки
- •8.3.3. Комбинированные способы вспомогательной тепловой обработки
- •9. Физико-химические изменения, происходящие при предварительной тепловой обработке продуктов
- •10. Изменения физико-химических свойств и биологической ценности при тепловой обработке продуктов
- •10.1. Изменение белков
- •10.2. Изменение жиров
- •10.3. Изменение углеводов
- •10.4. Изменение витаминов
- •10.5. Изменение минеральных элементов
- •10.6. Изменение пищевой и биологической ценности продуктов
- •10.7. Влияние тепловой обработки продуктов на потери массы
- •11. Методы консервирования пищевых продуктов
- •11.1. Биоз
- •11.2. Анабиоз
- •11.3. Ценобиоз
- •11.3.1. Квашение
- •11.3.2. Способы посола
- •11.4. Абиоз
- •Классификация методов консервирования при помощи
- •11.5. Общие технологические приемы, используемые при консервировании плодов и овощей
- •12. Реологические основы производства пищевых продуктов
- •12.1. Реология в производстве пищевых продуктов
- •12.2. Пищевые продукты как реологические тела
- •Классификация пищевых продуктов по реологическим
- •13. Технологии пищевых производств
- •13.1. Технология хлеба и хлебобулочных изделий
- •13.2. Технология производства сыра
- •Список использованной литературы
- •Для заметок
12.1. Реология в производстве пищевых продуктов
Пищевые отрасли вырабатывают огромное количество продуктов от элементарных по составу (например, поваренная соль или минеральная вода) до самых сложных в биологическом строении (например, мясные и рыбные продукты). Не менее разнообразно по состоянию и свойствам перерабатываемое сырье: от простых минеральных соединений до живых организмов. Многообразие применяемого сырья, необходимость направленной его обработки, связанной в ряде случаев с качественным изменением свойств сырья, вызывают необходимость применения разнообразных операций, форм воздействия, их интенсивности и характера подведения энергии к обрабатываемому сырью. В связи с этим перед научными и производственными работниками пищевой промышленности стоят проблемы создания и освоения прогрессивных технологических процессов с применением физических методов обработки: создания новых видов оборудования, обеспечивающих повышение эффективности производства; разработки объективных научных методов оценки качества сырья и продуктов и так далее. При решении этих вопросов существенное значение имеют реологические методы как научный фундамент для практических и теоретических разработок.
Качественное развитие реологии, которая играет важную роль в инженерной физико-химической механике, видно из следующих этапов ее изменения.
Классическая реология как наука о течении и деформации реальных тел (техническая механика реальных тел или дисперсных систем) ставит своей задачей изучение свойств существующих продуктов и разработку методов расчета процессов течения их в рабочих органах машин.
Физико-химическая механика как наука о способах и закономерностях формирования структур дисперсных систем с заранее заданными свойствами ставит своей задачей:
установление сущности образования и разрушения структур в дисперсных и нативных системах в зависимости от совокупности физико-химических, биохимических, механических и других факторов;
исследование, обоснование и оптимизацию путей получения структур с заранее заданными технологическими (в самом широком понимании этого слова) свойствами.
В задачу управляющей реологии входит исследование и обоснование такого сочетания различных видов воздействия, при которых обеспечивается заданный уровень реологических характеристик в течение всего технологического процесса.
Инженерная физико-химическая механика решает перечисленные выше задачи, кроме того, разрабатывает способы приложения установленных закономерностей для расчета машин и аппаратов и оперативного контроля основных показателей качества по значениям величин структурно-механических характеристик.
Реализация исследований методами инженерной физико-химической механики позволяет стабилизировать выход изделий, получать готовые продукты постоянного, заранее заданного качества, научно обосновывать понятие качества продуктов, рассчитывать, совершенствовать и интенсифицировать технологические процессы, «конструировать» те или иные виды пищевых продуктов и так далее. Это показывает, что реология и инженерная физико-химическая механика пищевых продуктов превратились из пассивных отраслей знания в производительную силу, позволяющую активно вмешиваться в производственные процессы с целью разработки новых и совершенствования существующих.
Основные структурно-механические свойства можно классифицировать по характеру приложения к продукту внешних усилий и вызываемых ими деформациям:
сдвиговые свойства - проявляются при воздействии касательных усилий;
компрессионные - при воздействии нормальных усилий;
поверхностные - при сдвиге или отрыве продукта от твердой поверхности.
При этом поверхностные явления, возникающие в межфазных разделах дисперсных гетерогенных систем и характеризующие внутреннюю структуру продукта, в последней группе свойств рассматриваются только частично, то есть в данное понятие вложен смысл, несколько отличающийся от традиционного. В зависимости от принятой модели реального тела в каждой группе свойств может существовать множество показателей: вязкость, пределы текучести, периоды релаксации, модули упругости, коэффициенты внешнего трения и т.п. Для измерения этих характеристик разработаны и используются самые различные приборы периодического и непрерывного действия.
Любой процесс следует рассматривать как непрерывную смену явлений во времени, не только комплексно, но и по наиболее характерным признакам. При этом описания явлений, которые выражают внешнюю форму внутренней природы материала, должны объективно отражать характерные внутренние связи. Для получения уравнений, применяемых в технических расчетах, в большинстве исследований и выводов из них основываются на гипотезах, рассматривающих материал с макроскопической точки зрения в качестве сплошной деформируемой среды, мерами подвижности частиц которой являются амплитуда и скорость смещения с непрерывным распределением основных физических свойств и деформаций.
Такой подход позволяет не рассматривать сложные молекулярные движения в телах, а использовать для описания процессов аппарат математического анализа, применяемого к непрерывным функциям. Однако наряду с признанием феноменологичекого способа реализация обработки продуктов физическими методами невозможна без изучения молекулярных взаимодействий в реальных системах. Например, классификация пищевых дисперсных систем учитывает ряд основных факторов: дисперсность, агрегатное состояние и тип контактов между дисперсными фазами. Большую роль при этом играют фундаментальные положения органической, физической, коллоидной и биологической химии.
Любые измерения, как бы тщательно они ни проводились, не могут дать двух абсолютно тождественных результатов. Как показала практика экспериментальных иследований, при измерении величин структурно-механических характеристик пищевых продуктов удовлетворительной считается ошибка ±2% для жидкообразных и до ±10% для твердообразных систем. В отдельных случаях, например, при измерении плотности, ошибки могут быть на порядок меньше.
Рассматриваемые вопросы направлены на возможность более глубокого понимания происходящих изменений в сырье в процессе его превращения в готовый продукт; влияния различных технологических процессов на формирование качества продукта; в ряде случаев дается предпосылка по-новому организовать технологические процессы, позволяющие улучшить качество изделия при постоянном контроле некоторых определяющих процесс характеристик, таких, как, например, реологические свойства.
Среди комплекса физических свойств реологические (структурно-механические) являются главнейшими; они часто предопределяют поведение продуктов в самых разнообразных технологических процессах и энергетических полях, являются внешним выражением внутренней сущности объектов, то есть характеризуют агрегативное состояние, дисперсность, строение, структуру и вид взаимодействий внутри продукта.
Реология как наука о деформации и течении реальных тел исходит из феноменологического поведения тел при механическом нагружении. Она исследует соотношение между действующим на тело напряжением и его действием деформацией.
