- •Предисловие
- •Статистика как наука
- •Методические указания
- •2. Теория статистического наблюдения
- •Решение типовых задач
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Пример 4.
- •3. Сводка и группировка статистичеких данных
- •3.6 Определите, к какому виду группировки относится статистическая таблица, характеризующая группировку промышленных предприятий по размеру основных фондов:
- •Решение типовых задач
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Группировка рабочих по стажу работы
- •Группировка рабочих по стажу работы
- •Группировка рабочих по стажу работы
- •Группировка рабочих по стажу и средней месячной выработке продукции
- •Пример 4.
- •Распределение колхозов по числу дворов в районах области
- •4. Статистические таблицы
- •Распределение безработных по полу и образованию в 2010 г. (в процентах)
- •Распределение безработных продолжительности безработицы (в процентах)
- •Распределение населения по категорям занятости и полу
- •Группировка некоторых коммерческих банков по величине капитала
- •Решение типовых задач
- •Название таблицы
- •Исполнение бюджетов государственных внебюджетных социальных фондов в 2010г.1
- •Исполнение бюджетов государственных внебюджетных социальных фондов в 2010г.1 (млн. У.Е.)
- •Цены на бензин ооо «Автобез» на 01.11.2003 г.
- •Основные показатели деятельности подрядных организаций строительного комплекса г. Москвы в 2002 г.
- •Структура инвестиций в основной капитал по видам основных фондов в некоторых федеральных округах рф в 2010 г. (% от общего объема инвестиций)
- •Динамика инвестиций в основной капитал в одном из регионов рф за период 1999-2003 гг.1
- •Распределение несовершеннолетних, совершивших правонарушения и преступления в одном из регионов рф в 2010 г. (по возрасту)1
- •Распределение эмитентов фондового рынка по величине котировки банковских долгов, выставленных на продажу в одном из вексельных центров в 2010 г.1
- •Распределение эмитентов фондового рынка по величине котировки банковских долгов и средневзвешенной ставке, выставленных на продажу в одном из вексельных центров в 2010 г.1
- •Распределение клиентов страховых компаний по категориям и страховым суммам в I квартале 2010 г.
- •Распределение ответов респондентов по удовлетворенности уровнем жизни и ощущением свободы в обществе
- •Социальные ориентации выпускников 11-го класса и социальное положение родителей (по отцу) (%)
- •Внешняя торговля областей одного из федеральных округов рф ос странами снг (млн. Долл. Сша)
- •Распределение женщин по возрасту и числу рожденных детей1
- •Иностранные инвестиции в экономику (млрд. Долл сша)1
- •Экспорт и импорт технологий и услуг технического характера ряда областей за год1
- •Распределение объема работ, выполненных по договорам строительного подряда, по формам собственности1
- •Структура безработных по полу и возрасту1
- •Распределение женщин в разводе по возрасту и продолжительности расторгнутых браков за год1
- •Пример1.
- •Пример2.
- •Пример3.
- •Изменение численности работников и заработной платы предприятия за отчетный период.
- •5. Абсолютные и относительные статистические величины
- •Решение типовых задач
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Пример 4.
- •Пример 5.
- •Пример 6.
- •Пример 7.
- •Пример 8.
- •Структура предприятий оптовой и розничной торговли по состоянию на конец 2011г. (%)
- •Пример 9.
- •Пример 10.
- •Пример 11.
- •6. Средние величины и показатели вариации
- •Решение типовых задач
- •Формулы различных степенных средних величин
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Пример 4.
- •Пример 5
- •Пример 6.
- •Пример 7.
- •Пример 8.
- •Пример 9.
- •7. Ряды динамики
- •Решение типовых задач
- •Показатели динамики
- •Средние показатели динамики
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Пример 4.
- •Пример 5.
- •Пример 6.
- •Пример 7.
- •Пример 8.
- •Пример 9.
- •8. Индексы
- •Решение типовых задач
- •Количество и цены проданных продуктов на рынке
- •Реализация товаров по универмагу
- •Реализация продуктов
- •Количество и себестоимость обуви
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Пример 4.
- •Пример 5.
- •Пример 6.
- •Пример 7.
- •Пример 8.
- •Пример 9.
- •9. Выборочное наблюдение
- •Решение типовых задач
- •Пример 1.
- •Пример 2
- •Пример 3
- •Пример 4
Пример 3.
По данным обследования получены следующие данные о распределении студентов-заочников по возрасту:
Группа № п/п |
Группы студентов по возрасту, лет (х) |
Число студентов, чел. (f) |
I |
20-25 |
200 |
II |
25-30 |
900 |
III |
30-35 |
800 |
IV |
35-40 |
100 |
|
ИТОГО: |
2000 |
Определите средний возраст студентов-заочников.
Решение:
Среднее значение признака по данным вариационного ряда распределения определяется по средней арифметической взвешенной:
Чтобы применить
эту формулу, надо значения признака в
интервале (варианты) выразить одним
числом, т.е. дискретной величиной, за
которую принимается середина интервала
каждой группы. Так, варианта первой
группы
и т.д. по остальным группам. Расчеты
удобнее представить в таблице:
Группа № п/п |
Группы студентов по возрасту, лет (х) |
Число студентов, чел. (f) |
Середина интервала, x |
|
I |
20-25 |
200 |
22,5 |
4500 |
II |
25-30 |
900 |
27,5 |
24750 |
III |
30-35 |
800 |
32,5 |
26000 |
IV |
35-40 |
100 |
37,5 |
3750 |
|
ИТОГО: |
2000 |
|
59000 |
Таким образом,
Пример 4.
Имеются следующие данные о распределении рабочих по тарифному разряду:
Тарифный разряд, х |
Число рабочих, в % к итогу, f |
Сумма накопленных частот, |
1 |
1 |
1 |
2 |
3 |
4 |
3 |
10 |
14 |
4 |
49 |
63 |
5 |
28 |
|
6 |
9 |
|
ИТОГО: |
100 |
|
Определите моду и медиану.
Решение:
В дискретных рядах модой является варианта с наибольшей частотой. В задаче наибольшее число рабочих имеют четвёртый разряд (49%). Следовательно, мода равна четвертому разряду. Для вычисления медианы надо определить сумму накопленных частот ряда, составляющую половину общей суммы частот. В графе 3 накопленная сумма частот составляет 63. Варианта x, соответствующая этой сумме, т.е. четвертому разряду, есть медиана.
Если сумма накопленных частот против одной из вариантов равна половине суммы частот, то медиана определяется как средняя арифметическая этой варианты и последующей.
