Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физическая и коллоидная химия(шпаргалка 47-59 в...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
122.68 Кб
Скачать

57. Закон Бугера-Ламберта-Бера.

Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

,

где   — интенсивность входящего пучка,   — толщина слоя вещества, через которое проходит свет,   — показатель поглощения (не путать с безразмерным показателем поглощения  , который связан с   формулой  , где   — длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

Поглощение света растворами

Для растворов поглощающих веществ в непоглощающих свет растворителях показатель поглощения может быть записан как

,

где   — коэффициент, характеризующий взаимодействие молекулы поглощающего растворённого вещества со светом с длиной волны λ,   — концентрация растворённого вещества, моль/л.

Утверждение, что   не зависит от  , называется законом Бера (не путать с законом Бэра). Этот закон предполагает, что на способность молекулы поглощать свет не влияют другие окружающие её молекулы этого же вещества в растворе. Однако, наблюдаются многочисленные отклонения от этого закона, особенно при больших  .

58. Рассеяние света коллоидными системами. Конус Тиндаля.

Рассеяние света является характерным свойством коллоидных растворов, отличающим их от истинных.

При пропускании светового луча через прозрачную коллоидную систему, то при наблюдении освещаемого сосуда сбоку будет виден путь прохождения луча в виде светящегося конуса (эффект Тиндаля)

Эффект Тиндалярассеяние Тиндаля (англ. Tyndall effect) — оптический эффект, рассеивание света при прохождении светового пучка через оптически неоднородную среду. Обычно наблюдается в виде светящегося конуса (конус Тиндаля), видимого на тёмном фоне.

Светорассеяние коллоидных растворов является их характерным свойством, позволяющим отличать их от молекулярных и ионных растворов, поскольку с опалесценцией связано явление, специфическое для коллоидных систем –конус Тиндаля. Яркий свет от сильного источника направляется на сосуд с раствором. При наблюдении сбоку в случае коллоидного раствора наблюдается равномерное свечение освещенного участка, иногда с небольшим расширением на выходе.

59. Структурно-механические свойства дисперсных систем.

Возникновение структур и их характер обычно опре­деляют, измеряя механические свойства систем: вязкость, упругость, пластичность, прочность. Поскольку эти свой­ства связаны со структурой, их называют структурно-механическими.

Структурно-механические свойства систем исследуют методами реологии.

Реология — наука о деформациях и течении матери­альных систем. Она изучает механические свойства систем по проявлению деформации под действием вне­шних напряжений.

Термин деформация означает относительное смещение точек системы, при котором не нарушается ее сплошность.

Внешнее напряжение — есть не что иное, как давле­ние Р.

В механике сплошных сред доказывается, что в случае несжимаемых материалов, каковыми являются большин­ство дисперсных систем, все виды деформации (растяже­ние, сжатие, кручение и др.) можно свести к основной — деформации сдвига под действием напряжения сдвига Р(Н/м2 = Па). Скорость деформации является скоростью сдвига. Деформацию выражают обычно посредством безразмерных величин γ. Скорость деформации dγ/dt = γ, где — время.

Изучая структурно-механические свойства дисперсных систем, можно определить, образуется ли в системе струк­тура и каков ее характер.

Свободнодисперсные (бесструктурные) системы

Агрегативно устойчивые золи (бесструктурные системы) подчиняются законам Ньютона, Пуазейля и Эйнштейна.

Закон Ньютона устанавливает связь между скорос­тью деформации и напряжением сдвига:

P = η∙( dγ/dt) = ηγ,

где Р— напряжение сдвига, поддерживающее течение жидкости, Па; γ— деформация (течение) жидкости; γ— скорость деформации; η— коэффициент пропорциональ­ности, называемый коэффициентом вязкости или динамической вязкостью, Па∙с; -1/η - величина, обратная вязкости, называется текучестью.

Вязкость η — величина постоянная, не зависящая от Р.

Закон Пуазейля выражает зависимость объема жидко­сти, протекающей через трубу или капилляр, от давления:

Q= К Р/η,

где Q— расход жидкости в единицу времени; Р— давле­ние в трубе; К— константа, определяемая геометрическими параметрами трубы или капилляра К= πr / 8 ∙l ,(r и lрадиус и длина трубы). Из графика, отвечающего закону Пуазейля, видно, что динамическая вязкость не зависит от давления, а скорость течения жид­кости прямо пропорциональна давлению.

Закон Эйнштейна устанавливает зависимость вязкос­ти η бесструктурной жидкой дисперсной системы от кон­центрации дисперсной фазы:

η = η0(1 + αφ), (3)

где η0 — динамическая вязкость дисперсионной среды; φ— объемная концентрация дисперсной фазы; α—коэффициент, определяемый формой частиц дисперс­ной фазы. График, отвечающий закону Эйнштейна.

Таким образом, относительное приращение вязкости прямо пропорционально относительному содержанию дис­персной фазы. Чем больше φ, тем сильнее выражено тор­мозящее влияние частиц, тем больше вязкость. Расчеты, проведенные Эйнштейном, показали, что для сфериче­ских частиц α = 2,5, для частиц другой формы α > 2,5. Жидкости, подчиняющиеся рассмотренным законам, на­зываются ньютоновыми жидкостями.

Жидкообразные структурированные системы

При наличии структуры взаимодействием между час­тицами дисперсной фазы нельзя пренебречь. Прилагае­мое напряжение сдвига не только заставляет жидкость течь, но и может разрушать существующую в ней струк­туру. Это неизбежно должно приводить к нарушению про­порциональности между прилагаемым напряжением Р и скоростью деформации ˙γ, вязкость системы η становит­ся величиной, зависящей от РСледовательно, для таких жидкостей законы Ньютона, Пуазейля и Эйнштейна не выполняются. Такие жидкости называются неньютоно­выми жидкостями.

Для описания связи между скоростью деформации γ и прилагаемым напряжением сдвига Робычно использу­ют эмпирическое уравнение Оствальда-Вейля:

P = kγn или η= kγ(n-1)(4)

где k и n— постоянные, характеризующие данную жидкообразную систему.

При n = 1 и k = ηуравнение (4) превратится в урав­нение Ньютона. Таким образом, отклонение величины п от единицы характеризует степень отклонения свойств неньютоновых жидкостей от ньютоновых. При n < 1 нью­тоновская вязкость уменьшается с увеличением напря­жения и скорости сдвига. Такие жидкости называются псевдопластическими.

П ри n > 1 ньютоновская вязкость жидкости увеличи­вается при увеличении напряжения и скорости сдвига. Та­кие жидкости называются дилатантными.

На рис. представлена кривая течения псевдопласти­ческой жидкости. На кривой имеются три характерных участ­ка. На участке I(ОА)система ведет себя подобно ньютоновой жидкости с большой вязкостью η max = ctg α1 .Такое поведение системы объясняется тем, что при малых скоростях течения структура, разрушаемая при­ложенной нагрузкой, успевает восстанавливаться. Такое тече­ние называется ползучестью.

Ползучесть — это медлен­ное течение с постоянной вяз­костью без прогрессирующего разрушения структуры.

Для слабоструктурирован­ных систем участок I обычно небольшой и его практически невозможно обнаружить. Для сильноструктурированных систем область значений Р, при которых наблюдается пол­зучесть, может быть весьма значительной. Напряжение Рк соответствует началу разрушения структуры.

На участке II (АВ)зависимость˙γ от Р теряет линей­ный характер, при этом вязкость уменьшается. Это умень­шение связано с разрушением структуры. В точке В струк­тура практически полностью разрушена. Напряжение, отвечающее этой точке, называется предельным напря­жением сдвига Рm При напряжениях Р > Рmкогда струк­тура системы разрушена, система течет подобно ньютоно­вой жидкости, имеющей вязкость η max = ctg α2.

Напряжение Рт называется пределом текучести — это минимальное напряжение сдвига, при котором ползучесть системы переходит в течение. Чем прочнее структура, тем выше предел текучести. Расход жидкости в единицу времени Qпротекающей через трубу при Р < Pm можно рассчитать по уравнению Бингама:

Q = (k/η*пл)( Р- Рт) (5)

Где η*пл — пластическая вязкость, она характеризует спо­собность структуры к разрушению при изменении на­грузки, т. е. ηпл = f(P).

Прочность структуры оценивается не только пределом текучести, но и разностью ηmax - ηmin. Чем больше эта раз­ность, тем прочнее структура. Значения и ηmax и ηmin могут различаться на несколько порядков. Так, для суспензии бентонитовой глины ηmax = 106 Па с, a ηmin = 10-2 Па с.

Твердообразные структурированные системы

Н а рис. изображена кривая течения твердообразной структурированной системы. Сравнивая эту кривую с аналогичной кривой для жидкообразной структурирован­ной системы, видим, что на первой кривой появился горизонтальный участок IVсовпадающий с осью абсцисс.

Он заканчивается при достижении давления, рав­ного PSназываемого статическим предельным напряже­нием сдвига. При Р < PSсистема не только не течет, но и не проявляет свойств ползучести, η= ∞. Величина PSха­рактеризует прочность сплош­ной пространственной сетки.

При Р > PSкривая течения твердообразной системы анало­гична кривой течения жидко-образной системы, рассмотрен­ной выше.

Для твердообразных упруго-пластичных тел Δη = ηmax - ηmin на много порядков больше, чем для жидкообразных и при дос­тижении предела текучести Ртнаступает лавинообразное разру­шение структуры с последую­щим пластическим течением.

В упругохрупких телах течение не наблюдается, так как напряжение, при котором про­исходит хрупкий разрыв, дос­тигается раньше, чем предел текучести.