- •Яды и противоядия
- •Введение
- •Глава 1. Яды и организм
- •Доза. Концентрация. Токсичность
- •Пути поступления ядов в организм
- •Превращение токсичных веществ в организме
- •Биологические особенности организма, влияющие на токсический процесс
- •Последствия воздействия ядов на организм
- •Глава 2. Антидоты - специфические средства борьбы с отравлениями
- •Из истории антидотов
- •Яд и противоядие - фармакологические антагонисты
- •Антидоты как лечебные препараты
- •Глава 3. Нервный импульс, яды и противоядия
- •Фосфорорганические соединения
- •Холиеэстераза и ацетилхолин
- •Механизм действия фосфорорганических соединений
- •Атропин и атропиноподобные вещества
- •Реактиваторы холинзстеразы
- •Адренергические медиаторы и рецепторные структуры
- •Серотонин
- •Гамма-аминомасляная кислота
- •Витамин в6, глутаминовая кислота и препараты меди как антидоты
- •Адреноблокаторы
- •Диэтиламид лизергиновой кислоты и его антагонисты
- •Глава 4. Тиоловые яды и их противоядия
- •Механизмы действия тиоловых ядов
- •Дитиоловые антидоты Британский антилюизит
- •Унитиол
- •Димеркаптоянтарная кислота (сукцимер)
- •Липоевая кислота
- •Комплексоны и их антидотное действие
- •Особенности механизма комплексообразования. Комплексоны и биоэлементы
- •Глава 5. Гемоглобин, яды и противоядия Гемоглобин
- •Окись углерода
- •Механизм токсического действия окиси углерода
- •Кислород как антидот
- •Гипербарическая оксигенация при отравлениях окисью углерода
- •Другие средства специфического лечения отравлений окисью углерода
- •Восстановители гемоглобина
- •157, Который к тому же заметно препятствует гемолизу.
- •Гемолитические яды и мекаптид (антарсин)
- •Глава 6. Цианиды и антицианиды Синильная кислота и другие цианиды
- •Механизм биологического действия цианидов
- •Антицианиды Сахар и сера обезвреживают цианиды
- •Метгемоглобин как антицианид
- •Другие антицианиды
- •Глава 7. Лекарственные интоксикации и антидоты
- •Глава 8. Обмен веществ, яды и противоядия
- •Заключение
- •Литература
Холиеэстераза и ацетилхолин
Согласно существующим представлениям, в основе механизма действия ФОС лежит избирательное торможение ими фермента ацетилхолинэстеразы, или просто холинэстеразы, которая катализирует гидролиз ацетилхолина-химического передатчика (медиатора) нервного возбуждения. Различают 2 типа холинэстеразы: истинную, "содержащуюся преимущественно в тканях нервной системы, в скелетной мускулатуре, а также в эритроцитах, и ложную, содержащуюся главным образом в плазме крови, печени и некоторых других органах. Собственно ацетилхолинэстеразой является истинная, или специфическая, холинэстераза, так как только она гидролизует названный медиатор. И именно ее в дальнейшем мы будем обозначать термином "холинэстераза". Поскольку фермент и медиатор являются необходимыми химическими компонентами передачи нервных импульсов в синапсах - контактах между двумя нейронами или окончаниями нейрона и рецепторной клеткой, следует более подробно остановиться на их биохимической роли.
Ацетилхолин синтезируется из спирта холина и ацетилкоэнзима А70 под влиянием фермента холинацетилазы в митохондриях нервных клеток и накапливается в окончаниях их отростков в виде пузырьков диаметром около 50 нм. Предполагается, что каждый такой пузырек содержит несколько тысяч молекул ацетилхолина. При этом в настоящее время принято различать ацетилхолин, готовый к секреции и расположенный в непосредственной близости от активной зоны, и ацетилхолин вне активной зоны, находящийся в состоянии равновесия с первым и не готовый к выделению в сипаптическую щель. Кроме того, имеется еще так называемый стабильный фонд ацетилхолина (до 15%), не освобождающегося даже в условиях блокады его синтеза.71 Под воздействием нервного возбуждения и ионов Са2+ молекулы ацетилхолина переходят в синаптическую щель - пространство шириною 20-50 нм, отделяющее окончание нервного волокна (пресинаптическую мембрану) от иннервируемой клетки. На поверхности последней расположена постсинаптическая мембрана с холинорецепторами - специфическими белковыми структурами, способными взаимодействовать с ацетилхолином. Воздействие медиатора на холинорецептор приводит к деполяризации (снижению заряда), временному изменению проницаемости постсинаптической мембраны для положительно заряженных ионов Na+ и проникновению их внутрь клетки, что в свою очередь выравнивает потенциал напряжения на ее поверхности (оболочке).72 Это дает начало новому импульсу в нейроне следующей ступени или вызывает деятельность клеток того или иного органа: мышцы, железы и др. (рис 5). Фармакологические исследования выявили существенную разницу в свойствах холинорецепторов различных синапсов. Рецепторы одной группы, проявляющие избирательную чувствительность к мускарину (яду гриба мухомора), названы мускариночувствительными, или М-холинорецепторами; они представлены главным образом в гладких мышцах глаз, бронхов, желудочно-кишечного тракта, в клетках потовых и пищеварительных желез, в сердечной мышце. Холинорецепторы второй группы возбуждаются малыми дозами никотина и поэтому названы никотино-чувствительными, или Н-холинорецепторами. К ним относятся рецепторы вегетативных ганглиев, скелетных мышц, мозгового слоя надпочечниковых желез, центральной нервной системы.
рис. 5. Основные структурные элементы и схема функционирования холинергического синапса (Голиков, Фишзон-Рысс, 1978). 1 - синаптические пузырьки; 2 - пресинаптические центры связывания ацетилхолина; 3 - синаптическая щель; 4 - миелиновая оболочка; 5 - митохондрии; 6 - шванновские клетки; ХР - холинорецептор; АХ - ацетил-холин; АХЭ - ацетилхолинэстераза; ХА - холинацетилаза
Молекулы ацетилхолина, выполнившие свою медиаторную функцию, должны быть немедленно инактивированы, в противном случае будет нарушена дискретность в проведении нервного импульса и проявится избыточная функция холинорецептора. Именно это осуществляет холинэстераза, мгновенно гидролизующая ацетилхолин. Каталитическая активность холинэстеразы превышает почти все известные ферменты: по разным данным, время расщепления одной молекулы ацетилхолина составляет около одной миллисекунды, что соизмеримо со скоростью передачи нервного импульса. Осуществление столь мощного каталитического эффекта обеспечивается наличием в молекуле холинэстеразы определенных участков (активных центров), обладающих исключительно хорошо выраженной реакционной способностью по отношению к ацетилхолину.73 Будучи простым белком (протеином), состоящим только из одних аминокислот, молекула холинэстеразы, как теперь выяснено, исходя из ее молекулярной массы, содержит от 30 до 50 таких активных центров.
рис. 6. Ферментативный гидролиз ацетилхолина. Объяснение в тексте
Как видно из рис. 6, участок поверхности холинэстеразы, непосредственно контактирующий с каждой молекулой медиатора, включает 2 центра, расположенных на расстоянии 0,4-0,5 мм: анионный, несущий отрицательный заряд, и эстеразный. Каждый из этих центров образован определенными группами атомов аминокислот, составляющих структуру фермента (гидроксилом, карбоксилом и др.). Ацетилхолин благодаря положительно заряженному атому азота (так называемой катионной головки) ориентируется за счет электростатических сил на поверхности холинэстеразы. При этом расстояние между атомом азота и кислотной группой медиатора соответствует расстоянию между активными центрами фермента. Анионный центр притягивает к себе катионную головку ацетилхолина и тем самым способствует сближению его эфирной группировки с эстеразным центром фермента. Затем рвется эфирная связь, ацетилхолин разделяется на 2 части: холиновую и уксусную, остаток уксусной кислоты присоединяется к эстеразному центру фермента и образуется так называемая ацетилирозанная холинэстераза. Этот крайне непрочный комплекс мгновенно подвергается спонтанному гидролизу, что освобождает фермент от остатка медиатора и приводит к образованию уксусной кислоты. С данного момента холииэстераза снова способна выполнять каталитическую функцию, а холин и уксусная кислота становятся исходными продуктами синтеза новых молекул ацетилхолина.
