- •Тема 1.
- •2. Методология научного познания. Границы научного метода.
- •Тема 2.
- •3. Измерение физических величин. Измерение коротких и длинных временных и пространственных интервалов. Наше место в пространстве и времени.
- •Тема 1.
- •4. Движение и способы его описания.
- •5. Законы Ньютона.
- •6. Масса инертная и гравитационная.
- •7. Вращательное и поступательное движение.
- •8. Уравнение моментов. Векторы момента силы и момента импульса.
- •9. Статическое равновесие.
- •10. Принцип относительности Галилея.
- •Тема 2.
- •11. Иерархия научных законов.
- •12. Законы сохранения в механике.
- •13. Математическая формулировка законов сохранения.
- •14. Ньютоновская космология.
- •15. Детерминизм Лапласа.
- •16. Неинерциальные системы отсчета.
- •17. Силы инерции.
- •18. Центробежная сила инерции.
- •19. Перегрузка и невесомость.
- •20. Гидродинамика (Элементы гидродинамики).
- •21. Уравнение неразрывности потока.
- •22.Закон Бернулли.
- •23. Силы внутреннего трения и механизм их возникновения.
- •24. Движение тела в неподвижной жидкости.
- •25. Разделение смесей. Центрифуга.
- •Тема 1.
- •26. Необратимые и обратимые процессы.
- •27. Открытые и закрытые системы.
- •28. Первое и второе начала термодинамики.
- •29. Статистическое определение энтропии, термодинамическая вероятность. Стрела времени.
- •30. Энтропия в изолированных и не изолированных системах.
- •31. Равновесные, слабо неравновесные и сильно неравновесные процессы.
- •Тема 2.
- •32. Нелинейная динамика. Диссипативные системы.
- •33. Порядок через флуктуацию. Тепловая конвекция – как прототип явлений самоорганизации. Порядок через флуктуацию в биологии.
- •Тема 1.
- •34. Основные законы электростатики.
- •35. Электростатическое поле, напряженность поля, принцип суперпозиции.
- •36. Электрическое поле в диэлектриках и проводниках.
- •37. Основные законы магнитного поля.
- •38. Сила Лоренца.
- •39. Движение заряженных частиц в электростатическом и магнитном поле.
- •40. Магнитное поле в веществе.
- •41. Электромагнитная индукция, токи смещения.
- •42. Взаимосвязь электрических и магнитных полей.
- •Тема 2.
- •43. Электромагнитные волны.
- •44. Оптические диапазон.
- •45. Геометрическая оптика. Миражи. Законы отражения и преломления света.
- •46. Поглощение и отражение света.
- •47. Интерференция и дифракция.
- •48. Когерентность. Способы получения когерентных пучков.
- •49. Применение явления интерференции.
- •50. Измерение скорости света. Давление света.
- •Тема 1.
- •51. Противоречия электродинамики и принципа относительности Галилея.
- •52. Эксперимент против очевидного: постоянство скорости света, зависимость массы от скорости.
- •53. Эквивалентность массы и энергии.
- •54. Основные постулаты теории относительности Энштейна.
- •55. Преобразования Лоренца.
- •Тема 2.
- •56. Одновременность событий.
- •58. Пространственно-временные графики и понятия «прошлое, настоящее и будущее».
- •59. Экспериментальное подтверждение кривизны пространства и замедления времени.
- •Тема 1.
- •60. Тепловое излучение. Квантовая гипотеза Планка.
- •61. Открытие электрона.
- •62. Фотоэффект.
- •63. Развитие представлений о строении атома.
- •64. Опыты Резерфорда.
- •Тема 2.
- •65. Корпускулярно-волновой дуализм.
- •66. Принцип неопределенности Гейзенберга.
- •67. Вероятностное описание – принципиальная особенность микромира.
- •68. Роль приборов в исследовании микрообъектов.
- •Тема 3.
- •69. Строение атома. Периодическая система элементов.
- •70. Радиоактивность. Период полураспада. Альфа, бета и гамма распад.
- •71. Открытие нейтрона. Основные свойства протонов и нейтронов: масса, спин, магнитный момент.
- •72. Состав атомных ядер.
- •73. Ядерные силы.
- •74. Ядерные превращения.
- •75. Ядерные реакции, классификации.
- •76. Цепная реакция деления.
- •77. Термоядерная реакция синтеза.
- •78. Сильные и слабые взаимодействия.
- •79. Частицы и античастицы. Классификация элементарных частиц.
- •80. Законы сохранения в ядерной физике.
- •81. Квантовая хромодинамика. Гипотеза кварков.
42. Взаимосвязь электрических и магнитных полей.
Первое уравнение Максвелла. Звучит следующим образом: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна полному току, пронизывающему этот контур.
.
Т.о.
физический смысл:
магнитное
поле в некоторой области пространства
связано не только с токами проводимости,
протекающими в этой области, но и с
изменением электрического поля во
времени в этой области(токами смещения).
Это
означает, что циркуляция вектора
по
контуру L равна сумме токов проводимости
и смещения.
;
- первое
уравнение Максвелла в интегральной
форме.
Второе уравнение Максвелла - это обобщение закона индукции Фарадея для диэлектрической среды в свободном пространстве
, где Ф – поток магнитной индукции,
пронизывающий проводящий контур и
создающий в нем ЭДС. ЭДС создается не
только в проводящем контуре, но и в
некотором диэлектрическом контуре в
виде электрического тока смещения.
Физический
смысл второго уравнения Максвелла
состоит в том, что электрическое поле
в некоторой области пространства
связано с изменением магнитного поля
во времени в этой области.
То есть переменное магнитное поле
возбуждает вихревое электрическое
поле.Третье уравнение Максвелла. Закон сохранения заряда. Третье уравнение Максвелла определяет источники электрического поля. Физический смысл этого уравнения состоит в том, что электрическое поле в некоторой области пространства связано с электрическим зарядом внутри этой поверхности.
Исходным для этого уравнения является уравнение Гаусса, которое говорит о том, что поток вектора
через
замкнутую поверхность S равен заряду
Q, заключенному в данной поверхности:
; Q=
,
где
ρ – объемная плотность заряда.
- третье
уравнение Максвелла в интегральной
форме.
Четвертое уравнение Максвелла устанавливает отсутствие магнитных зарядов и то, что магнитные силовые линии всегда замкнуты. В интегральном виде этот факт записывается в виде уравнения
.
Поток
вектора магнитной индукции через
замкнутую поверхность равен нулю,
поскольку магнитных зарядов одного
знака в природе не обнаружено.
Тема 2.
43. Электромагнитные волны.
Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:
Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.
Максвелл высказал гипотезу о существовании и обратного процесса:
Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.
Из теории Максвелла вытекает ряд важных выводов:
1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны.
2. Электромагнитные волны распространяются в веществе с конечной скоростью
. Здесь
ε и μ – диэлектрическая и магнитная
проницаемости вещества, ε0
и μ0
– электрическая и магнитная постоянные:
ε0 = 8,85419·10–12 Ф/м,
μ0 = 1,25664·10–6 Гн/м.
Длина волны λ в синусоидальной волне сввязана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.
Скорость
электромагнитных волн в вакууме
(ε = μ = 1):
.
Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.
Тогда задумались, что за волны представляет свет? Свет – электромагнитная волна. Могут иметь частоты от 0 до бесконечности. Все они имеют одинаковую природу и одинаковую скорость.
Диапозон делится на:
106 – широковиз.
107 – коротковолновый.
108 – видео-частоты.
109-1012 – микроволновый.
1012-1014 – инфракрасный (тепловое излучение).
1014-1015 – видимый.
1015-1017 – ультрафиолетовое.
1018 – рентгеновское.
1019 – гамма-излучение.
