- •Тема 1.
- •2. Методология научного познания. Границы научного метода.
- •Тема 2.
- •3. Измерение физических величин. Измерение коротких и длинных временных и пространственных интервалов. Наше место в пространстве и времени.
- •Тема 1.
- •4. Движение и способы его описания.
- •5. Законы Ньютона.
- •6. Масса инертная и гравитационная.
- •7. Вращательное и поступательное движение.
- •8. Уравнение моментов. Векторы момента силы и момента импульса.
- •9. Статическое равновесие.
- •10. Принцип относительности Галилея.
- •Тема 2.
- •11. Иерархия научных законов.
- •12. Законы сохранения в механике.
- •13. Математическая формулировка законов сохранения.
- •14. Ньютоновская космология.
- •15. Детерминизм Лапласа.
- •16. Неинерциальные системы отсчета.
- •17. Силы инерции.
- •18. Центробежная сила инерции.
- •19. Перегрузка и невесомость.
- •20. Гидродинамика (Элементы гидродинамики).
- •21. Уравнение неразрывности потока.
- •22.Закон Бернулли.
- •23. Силы внутреннего трения и механизм их возникновения.
- •24. Движение тела в неподвижной жидкости.
- •25. Разделение смесей. Центрифуга.
- •Тема 1.
- •26. Необратимые и обратимые процессы.
- •27. Открытые и закрытые системы.
- •28. Первое и второе начала термодинамики.
- •29. Статистическое определение энтропии, термодинамическая вероятность. Стрела времени.
- •30. Энтропия в изолированных и не изолированных системах.
- •31. Равновесные, слабо неравновесные и сильно неравновесные процессы.
- •Тема 2.
- •32. Нелинейная динамика. Диссипативные системы.
- •33. Порядок через флуктуацию. Тепловая конвекция – как прототип явлений самоорганизации. Порядок через флуктуацию в биологии.
- •Тема 1.
- •34. Основные законы электростатики.
- •35. Электростатическое поле, напряженность поля, принцип суперпозиции.
- •36. Электрическое поле в диэлектриках и проводниках.
- •37. Основные законы магнитного поля.
- •38. Сила Лоренца.
- •39. Движение заряженных частиц в электростатическом и магнитном поле.
- •40. Магнитное поле в веществе.
- •41. Электромагнитная индукция, токи смещения.
- •42. Взаимосвязь электрических и магнитных полей.
- •Тема 2.
- •43. Электромагнитные волны.
- •44. Оптические диапазон.
- •45. Геометрическая оптика. Миражи. Законы отражения и преломления света.
- •46. Поглощение и отражение света.
- •47. Интерференция и дифракция.
- •48. Когерентность. Способы получения когерентных пучков.
- •49. Применение явления интерференции.
- •50. Измерение скорости света. Давление света.
- •Тема 1.
- •51. Противоречия электродинамики и принципа относительности Галилея.
- •52. Эксперимент против очевидного: постоянство скорости света, зависимость массы от скорости.
- •53. Эквивалентность массы и энергии.
- •54. Основные постулаты теории относительности Энштейна.
- •55. Преобразования Лоренца.
- •Тема 2.
- •56. Одновременность событий.
- •58. Пространственно-временные графики и понятия «прошлое, настоящее и будущее».
- •59. Экспериментальное подтверждение кривизны пространства и замедления времени.
- •Тема 1.
- •60. Тепловое излучение. Квантовая гипотеза Планка.
- •61. Открытие электрона.
- •62. Фотоэффект.
- •63. Развитие представлений о строении атома.
- •64. Опыты Резерфорда.
- •Тема 2.
- •65. Корпускулярно-волновой дуализм.
- •66. Принцип неопределенности Гейзенберга.
- •67. Вероятностное описание – принципиальная особенность микромира.
- •68. Роль приборов в исследовании микрообъектов.
- •Тема 3.
- •69. Строение атома. Периодическая система элементов.
- •70. Радиоактивность. Период полураспада. Альфа, бета и гамма распад.
- •71. Открытие нейтрона. Основные свойства протонов и нейтронов: масса, спин, магнитный момент.
- •72. Состав атомных ядер.
- •73. Ядерные силы.
- •74. Ядерные превращения.
- •75. Ядерные реакции, классификации.
- •76. Цепная реакция деления.
- •77. Термоядерная реакция синтеза.
- •78. Сильные и слабые взаимодействия.
- •79. Частицы и античастицы. Классификация элементарных частиц.
- •80. Законы сохранения в ядерной физике.
- •81. Квантовая хромодинамика. Гипотеза кварков.
41. Электромагнитная индукция, токи смещения.
Магнитное поле может вызывать электрические токи. Если изменить магнитное поле возникает электрический ток (не зависит от свойств проводника).
Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.
Магнитным
потоком Φ
через площадь S
контура называют величину
где
B
– модуль вектора
магнитной индукции,
α – угол между вектором
и нормалью
к плоскости контура. Ф определяется
числом силовых линий, пронизывающих
контур. Максвелл начал формировать
теорию электромагнитного поля.
Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м2:
1 Вб = 1 Тл · 1 м2. |
Фарадей
экспериментально установил, что при
изменении магнитного потока в проводящем
контуре возникает ЭДС индукции
,
равная скорости изменения магнитного
потока через поверхность, ограниченную
контуром, взятой со знаком минус:
Эта формула носит название закона Фарадея.
Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца.
Направление индукционного тока. Правило Ленца: направление индукционного тока будет таким, чтобы его действие было противоположно действию причины, вызывающей этот ток.
Величина индукционного тока: когда изменяются поля, тогда изменяются силовые линии.
Ток смещения - величина, пропорциональная скорости изменения переменного электрического поля в диэлектрике или вакууме. Ток смещения, так же как и ток проводимости, порождает магнитное поле.
Магнитное поле создается не только движением зарядов (током проводимости, или просто током), но и любым изменением во времени электрического поля.
Понятие ток смещения введено Максвеллом для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем.
В
соответствии с теорией Максвелла, в
цепи переменного тока, содержащей
конденсатор, переменное электрическое
поле в конденсаторе в каждый момент
времени создает такое магнитное поле,
какое создавал бы ток, (названный током
смещения), если бы он протекал между
обкладками конденсатора. Из этого
определения следует, что Jсм
= J
(т. е., численные значения плотности тока
проводимости и плотности тока смещения
равны), и, следовательно, линии плотности
тока проводимости внутри проводника
непрерывно переходят в линии плотности
тока смещения между обкладками
конденсатора. Плотность тока смещения
jсм
характеризует скорость изменения
электрической индукции
D
во времени: Jсм
=
D/
t.
Ток смещения не выделяет джоулевой теплоты, его основное физическое свойство — способность создавать в окружающем пространстве магнитное поле.
Вихревое магнитное поле создается полным током, плотность которого j, равна сумме плотности тока проводимости и тока смещения D/ t.
