Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сам.раб свойства_реология.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.48 Mб
Скачать

Реологические показатели термизированных йогуртных продуктов на основе разработанной структурообразующей добавки

Номер образца

Индекс структурирования

Стандартное отклонение

Коэффициент

корреляции

Зависимость скорости сдвига от напряжения сдвига

1

2

3

4

5

6

7

8

1,59

1,61

1,73

1,64

1,52

1,48

1,75

1,50

0,14

0,23

0,18

0,33

0,24

0,09

0,11

0,06

0,9994

0,9997

0,9997

0,9992

0,9995

0,9993

0,9994

0,9996

0,612 τ1,59-16

0,588 τ1,61 -14

0,620 τ1,73 -14

0,710 τ1,64 - 12

0,462 τ1,52 - 5

0,427 τ1,48 -18

0,773 τ1,75 -15

0,047 τ1,50 - 7

В йогуртных продуктах, выработанных в производственных условиях с использованием предложенных рецептур, были определены физико-химические и органолептические показатели. Структурно-механические свойства кисломолочного продукта определяли с использованием ротационного вискозиметра «Reotest-2».

В результате установлено, что йогурт, приготовленный с использованием разработанной структурообразующей добавки, не уступает по своим структурно-механическим и органолептическим характеристикам продуктам, содержащим стабилизатор фирмы НАНN, а ее применение позволяет снизить себестоимость готового продукта на 12 %.

К.К. Полянским, Н.С. Родионовой изучены реологические свойства молочной композиционной основы для производства лечебно- профилактических структурированных продуктов с использованием пектинсодержащих компонентов. Пектин (ГОСТ 29186-91) после набухания в количестве 0,2-1,0 % вносили в обезжиренное молоко, полученную смесь подвергали тепловой обработке, затем охлаждали до (20 2) 0С. Реологические характеристики (вязкость, текучесть) определяли с помощью прибора «Реотест-2». Анализ полученных зависимостей кривых течения от касательного напряжения и динамической вязкости от градиента скорости исследуемых молочно-пектиновых систем показал наличие трех условных групп образцов, обладающих различными реологическими характеристиками.

Первая группа образцов с массовой долей пектина 0,2-0,4 % характеризуется линейной зависимостью градиента скорости от касательного напряжения, что свидетельствует о мгновенном разрушении структуры и позволяет отнести эти образцы к ньютоновским жидкостям. Изучение процессов развития микрофлоры в них показало возможность разработки технологии лечебно-профилактических напитков с массовой долей пектина 0,4 % с увеличенным сроком хранения от 10 до 14 суток.

Для второй группы молочно-пектиновых систем с массовой долей пектина 0,5-0,7 % характерно отклонение от линейной зависимости градиента скорости относительно касательного напряжения, что позволяет отнести их к структурированным, легко разрушимым продуктам, обладающим тиксотропными свойствами. На основе данных композиционных систем целесообразно разработать ассортимент лечебно-профилактических структурированных продуктов десертного назначения: йогуртов, соусов, майонезов и т.д.

Третья группа образцов с массовой долей пектина от 0,8 % до 1 % характеризуется нелинейной зависимостью градиента скорости от касательного напряжения, т.е. обладает коагуляционно-конденсационной структурой. На основе этой системы возможно производство структурированных продуктов: пудингов, желе, кремов.

Дальнейшее увеличение массовой доли пектина вызывало разделение системы на концентрат казеина и концентрат структурирующий пищевой.

Таким образом, на основании полученных результатов определены интервалы массовой доли вносимого пектина, определяющие реологические характеристики композиционной основы для производства трех групп продуктов лечебно-профилактического назначения: напитков, йогуртов, соусов, пудингов, суфле, кремов.

Вязкость кефира. В процессе производства кефира реологические методы исследования можно применять как для контроля качества продукта в процессе его приготовления, так и для оценки качества готового продукта.

Установлено, что с изменением рН среды, накоплением продуктов брожения, характеризующих вкус кефира, изменяются структурно-механические свойства продукта. При изменении рН от 4 до 5,2 вязкость (Па·с), измеренная с помощью реовискозиетра Гепплера при напряжении сдвига 2 Па, уменьшается по экспоненциальному закону:

η = 2000 exp (-2,5 рН), (17)

При рН больше 5,6 вязкость практически составляет 3,5·10 -3 Па·с.

Качество продукта во многом определяется своевременным прекращением процессов сквашивания и перемешивания. Для получения кефира хорошего вкуса и нужной консистенции его надо перемешивать при рН 4,4-4,5, когда продукт имеет структуру высокой прочности, которая сохраняет свои свойства при последующем механическом воздействии и в процессе хранения.

Вязкость хорошего кефира должна быть 2,9-3,2 Па с при касательном напряжении 980 Па или 1,6-1,9 Па с при касательном напряжении 1960 Па. В процессе хранения при пониженных температурах в кефире может происходить отделение сыворотки. Однако если вязкость кефира выше 2,4 Па с при касательном напряжении 980 Па, то сыворотка отделяться не будет.

Таким образом, контролируя в процессе производства кефира только рН и вязкость, можно получить продукт высокого качества.

Влияние некоторых технологических факторов на реологические свойства кисломолочных продуктов качественно можно оценить следующим образом. Упругость сгустка возрастает с увеличением содержания жира до 21 %, затем уменьшается. Аналогично происходит процесс отделения сыворотки. Подобное влияние оказывает и увеличение содержания сухих веществ. Режимы пастеризации почти не влияют рН. Повышение температуры пастеризации увеличивает упругость сгустка, а длительная пастеризация уменьшает ее. Оптимальное давление гомогенизации 200 105 Па при температуре 85 0С для молока и 75 0С для сливок. Упругость сгустка и вязкость имеют максимальные значения без перемешивания и при перемешивании через 5 ч после инкубации, когда молоко еще остается жидким. При перемешивании степень отделения сыворотки возрастала.

Разработаны технические условия и технологическая инструкция по производству пасты «Кэндилак» из молочной сыворотки, предназначенной для использования в качестве компонента – обогатителя при выработке плавленых сыров. Паста представляет собой структурированную дисперсную систему с псевдопластическими свойствами. Реограммы носят экспоненциально-убывающий характер с более выраженным аномальным проявлением вязкости при низкой температуре.

Реологическая кривая описывается степенным уравнением течения псевдопластического материала Оствальда-де Вале с величиной достоверности аппроксимации R2 = 0,986:

Р = 101,4 0,382, (18)

где Р - касательное напряжение сдвига, Н/м2; - градиент скорости сдвига, с-1.

Поскольку в уравнении индекс течения (показатель степени) значительно меньше единицы (0,382), это означает, что при температуре 20 0С эффективная вязкость пасты уменьшается с повышением скорости сдвига. При 40 0С зависимость выражается линейным уравнением и паста проявляет свойства ньютоновской вязкой жидкости. Предельное напряжение сдвига при 20 0С составляет 17-30 кПа. Свойство пасты переходить в жидкое состояние при нагревании до 40-50 0С позволяет ее перефасовывать, дозировать или смешивать с другими компонентами. При этом первоначальные псевдопластические свойства восстанавливаются при охлаждении до 18-22 0С.

Комплексные исследования сывороточной пасты «Кэндилак» подтвердили ее пищевую безвредность и возможность применения при производстве пищевых продуктов. Обладая высоким осмотическим давлением, паста устойчива к действию микроорганизмов. Срок хранения в герметичной упаковке для сгущенных молочных продуктов при температуре не выше 25 0С – 6 месяцев, при контакте с воздухом возможно некоторое потемнение поверхностного слоя.

Вязкость сгущенных молочных продуктов. Вязкость уменьшается с повышением температуры, увеличивается с повышением концентрации сухих веществ. Высокотемпературная обработка также приводит к повышению вязкости (см. табл. 2).

Сгущенное цельное молоко и обезжиренное молоко без сахара при концентрации сухих веществ до 0,45 кг на 1 кг сгущенного молока (45%) проявляет малую аномалию вязкости.

Для вычисления вязкости несгущенного и сгущенного молока в зависимости от температуры удобно пользоваться формулами. Например, для молока с φ =0,032 кг жира на 1 кг молока (3,2 %) ТПР = 295 К и η п р = 1,65 10 -3 Па с.

Температура приведения и соответствующее ей значение вязкости сгущенного обезжиренного молока зависят от содержания СОМО:

ТПР = 293 + 267 (СОМО)2 , (19)

lg п р 10 6) = 2,34 СОМО – 0,168, (20)

Формула 20 действительна для молока с содержанием СОМО от 0,10 до 0,20. При содержании СОМО в молоке от 0,08 до 0,10 ν пр изменяется от 1,96·10 -6 до 2·10 - 6 м2/с.

Вязкость обезжиренного молока, сгущенного посредством ультрафильтрации, может быть вычислена по формуле:

η 103 = 660 с 2,24 + 1,71, (21)

где с – концентрация белка, кг белка на 1 кг продукта.

Формула 21 действительна при с < 0,15 и t = 20 0С.

Значения вязкости, рассчитанные по формуле 21, приведены в табл. 22.

Таблица 22

Вязкость обезжиренного сгущенного молока

с, кг/кг

0,03

0,06

0,09

0,12

0,15

η·103, Па·с

1,996

2,919

4,709

7,424

11,13

Формирование реологических свойств молока цельного сгущенного с сахаром происходит в ходе технологического процесса производства продукта (табл. 23).

Сгущенные молочные продукты с сахаром являются псевдоэластичными неньютоновскими жидкостями.

Таблица 23

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]